【題目】如圖是函數(shù)
的圖象,給出下列命題:
![]()
①
是函數(shù)
的極值點(diǎn)
②1是函數(shù)
的極小值點(diǎn)
③
在
處切線的斜率大于零
④
在區(qū)間
上單調(diào)遞減
則正確命題的序號是__________.
【答案】①③④
【解析】①由導(dǎo)數(shù)圖象可知,當(dāng)x<2時(shí),f′(x)<0,函數(shù)單調(diào)遞減,當(dāng)x>2時(shí),f′(x)>0,函數(shù)單調(diào)遞增,
∴2是函數(shù)y=f(x)的極小值點(diǎn),∴①正確。
②當(dāng)x>2時(shí),f′(x)>0,函數(shù)單調(diào)遞增,
∴1是函數(shù)y=f(x)的極小值點(diǎn),錯(cuò)誤。
③當(dāng)x>2時(shí),f′(x)>0,函數(shù)單調(diào)遞增,
∴y=f(x)在x=0處切線的斜率大于零,∴③正確。
④當(dāng)x<2時(shí),f′(x)<0,函數(shù)單調(diào)遞減,
∴y=f(x)在區(qū)間(∞,2)上單調(diào)遞減,∴④正確。
則正確命題的序號是①③④,
故答案為:①③④
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,以
為頂點(diǎn)的六面體中,
和
均為等邊三角形,且平面
平面
,
平面
,
,
.
![]()
(1)求證:
平面
;
(2)求此六面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ<
)的部分圖象如圖所示. ![]()
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)=f(x﹣
)﹣f(x+
)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,圓C經(jīng)過A(0,1),B(3,4),C(6,1)三點(diǎn).
(1)求圓C的方程;
(2)若圓C與直線x﹣y+a=0交于A,B兩點(diǎn),且OA⊥OB,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)老師對本校2013屆高三學(xué)生某次聯(lián)考的數(shù)學(xué)成績進(jìn)行分析,按1:50進(jìn)行分層抽樣抽取20名學(xué)生的成績進(jìn)行分析,分?jǐn)?shù)用莖葉圖記錄如圖所示(部分?jǐn)?shù)據(jù)丟失),得到的頻率分布表如下: ![]()
分?jǐn)?shù)段(分) | [50,70] | [70,90] | [90,110] | [110,130] | [130,150] | 合計(jì) |
頻數(shù) | b | |||||
頻率 | a | 0.25 |
(1)表中a,b的值及分?jǐn)?shù)在[90,100)范圍內(nèi)的學(xué)生,并估計(jì)這次考試全校學(xué)生數(shù)學(xué)成績及格率(分?jǐn)?shù)在[90,150]范圍為及格);
(2)從大于等于110分的學(xué)生隨機(jī)選2名學(xué)生得分,求2名學(xué)生的平均得分大于等于130分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有4位同學(xué)在同一天的上、下午參加“身高與體重”、“立定跳遠(yuǎn)”、“肺活量”、“握力”、“臺階”五個(gè)項(xiàng)目的測試,每位同學(xué)上、下午各測試一個(gè)項(xiàng)目,且不重復(fù).若上午不測“握力”項(xiàng)目,下午不測“臺階”項(xiàng)目,其余項(xiàng)目上、下午都各測試一人,則不同的安排方式共有__________種(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,
=(3,2),
=(x,y),
=(﹣2,﹣3)
(1)若
∥
,試求x與y滿足的關(guān)系式;
(2)滿足(1)同時(shí)又有
⊥
,求x,y的值及四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)滿足f(x)+f(2﹣x)=2,當(dāng)x∈(0,1]時(shí),f(x)=x2 , 當(dāng)x∈(﹣1,0]時(shí),
,若定義在(﹣1,3)上的函數(shù)g(x)=f(x)﹣t(x+1)有三個(gè)不同的零點(diǎn),則實(shí)數(shù)t的取值范圍是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com