【題目】已知函數(shù)![]()
(I)討論函數(shù)
的單調(diào)性;
(II)當
時,證明
(其中e為自然對數(shù)的底數(shù))
【答案】(I)答案不唯一,具體見解析(II)證明見解析;
【解析】
(I)求導(dǎo),分
及
,討論
與0的關(guān)系,得出函數(shù)的單調(diào)性;
(II) 依題意,只需證明
,令
,利用導(dǎo)數(shù)求其最小值大于0即可得證.
(I)由題意,函數(shù)
的定義域為
,
,
當
時,
;
當
時,
;
當
時,
或
;
;
當
時,
;
當
時,
或
;
.
綜上討論知:當
時,
在
上單調(diào)遞增,在
上單調(diào)遞減;
當
時,
在
,
上單調(diào)遞增,在
上單調(diào)遞減;
當
時,
在
上單調(diào)遞增;
當
時,
在
,
上單調(diào)遞增,在
上單調(diào)遞減.
(II)當
時,由
,只需證明
,
令
,
.
設(shè)
,則
.
當
時,
,
單調(diào)遞減;
當
時,
,
單調(diào)遞增,
∴當
時,
取得唯一的極小值,也是最小值.
的最小值是
成立.
故
成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,其中e是自然對數(shù)的底數(shù).
(1)若函數(shù)
的極大值為
,求實數(shù)a的值;
(2)當a=e時,若曲線
與
在
處的切線互相垂直,求
的值;
(3)設(shè)函數(shù)
,若
>0對任意的x
(0,1)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
,
、
分別是其左、右焦點,過
的直線
與橢圓
交于
兩點,且橢圓
的離心率為
,
的周長等于
.
(1)求橢圓
的方程;
(2)當
時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年春節(jié)突如其來的新型冠狀病毒肺炎在湖北爆發(fā),一方有難八方支援,全國各地的白衣天使走上戰(zhàn)場的第一線,某醫(yī)院抽調(diào)甲、乙兩名醫(yī)生,抽調(diào)
、
、
三名護士支援武漢第一醫(yī)院與第二醫(yī)院,參加武漢疫情狙擊戰(zhàn)其中選一名護士與一名醫(yī)生去第一醫(yī)院,其它都在第二醫(yī)院工作,則醫(yī)生甲和護士
被選在第一醫(yī)院工作的概率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)上購物的普及,傳統(tǒng)的實體店遭受到了強烈的沖擊,某商場實體店近九年來的純利潤如下表所示:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
時間代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
實體店純利潤 | 2 | 2.3 | 2.5 | 2.9 | 3 | 2.5 | 2.1 | 1.7 | 1.2 |
根據(jù)這9年的數(shù)據(jù),對
和
作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.254;根據(jù)后5年的數(shù)據(jù),對
和
作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.985;
(1)如果要用線性回歸方程預(yù)測該商場2019年實體店純利潤,現(xiàn)有兩個方案:
方案一:選取這9年的數(shù)據(jù),進行預(yù)測;
方案二:選取后5年的數(shù)據(jù)進行預(yù)測.
從生活實際背景以及相關(guān)性檢驗的角度分析,你覺得哪個方案更合適.
附:相關(guān)性檢驗的臨界值表:
| 小概率 | |
0.05 | 0.01 | |
3 | 0.878 | 0.959 |
7 | 0.666 | 0.798 |
(2)某機構(gòu)調(diào)研了大量已經(jīng)開店的店主,據(jù)統(tǒng)計,只開網(wǎng)店的占調(diào)查總?cè)藬?shù)的
,既開網(wǎng)店又開實體店的占調(diào)查總?cè)藬?shù)的
,現(xiàn)以此調(diào)查統(tǒng)計結(jié)果作為概率,若從上述統(tǒng)計的店主中隨機抽查了5位,求只開實體店的人數(shù)的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)若
在
上恒成立,求實數(shù)
的取值范圍;
(3)在(2)的條件下(提示:可以用第(2)問的結(jié)論),對任意的
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐
中,
為正三角形,
為棱
的中點,
,
,平面
平面![]()
![]()
(1)求證:平面
平面
;
(2)若
是棱
上一點,
與平面
所成角的正弦值為
,求二面角
的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在傳染病學(xué)中,通常把從致病刺激物侵人機體或者對機體發(fā)生作用起,到機體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對應(yīng)的相關(guān)癥狀時止的這一階段稱為潛伏期. 一研究團隊統(tǒng)計了某地區(qū)1000名患者的相關(guān)信息,得到如下表格:
潛伏期(單位:天) |
|
|
|
|
|
|
|
人數(shù) |
|
|
|
|
|
|
|
(1)求這1000名患者的潛伏期的樣本平均數(shù)x (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表) ;
(2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過6天為標準進行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表
潛伏期 | 潛伏期 | 總計 | |
|
| ||
|
| ||
總計 |
|
(3)以這1000名患者的潛伏期超過6天的頻率,代替該地區(qū)1名患者潛伏期超過6天發(fā)生的概率,每名患者的潛伏期是否超過6天相互獨立,為了深入研究,該研究團隊隨機調(diào)查了20名患者,其中潛伏期超過6天的人數(shù)最有可能(即概率最大)是多少?
附:
|
|
|
|
|
|
|
|
,其中
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com