【題目】隨著網(wǎng)上購物的普及,傳統(tǒng)的實(shí)體店遭受到了強(qiáng)烈的沖擊,某商場實(shí)體店近九年來的純利潤如下表所示:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
時(shí)間代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
實(shí)體店純利潤 | 2 | 2.3 | 2.5 | 2.9 | 3 | 2.5 | 2.1 | 1.7 | 1.2 |
根據(jù)這9年的數(shù)據(jù),對
和
作線性相關(guān)性檢驗(yàn),求得樣本相關(guān)系數(shù)的絕對值為0.254;根據(jù)后5年的數(shù)據(jù),對
和
作線性相關(guān)性檢驗(yàn),求得樣本相關(guān)系數(shù)的絕對值為0.985;
(1)如果要用線性回歸方程預(yù)測該商場2019年實(shí)體店純利潤,現(xiàn)有兩個(gè)方案:
方案一:選取這9年的數(shù)據(jù),進(jìn)行預(yù)測;
方案二:選取后5年的數(shù)據(jù)進(jìn)行預(yù)測.
從生活實(shí)際背景以及相關(guān)性檢驗(yàn)的角度分析,你覺得哪個(gè)方案更合適.
附:相關(guān)性檢驗(yàn)的臨界值表:
| 小概率 | |
0.05 | 0.01 | |
3 | 0.878 | 0.959 |
7 | 0.666 | 0.798 |
(2)某機(jī)構(gòu)調(diào)研了大量已經(jīng)開店的店主,據(jù)統(tǒng)計(jì),只開網(wǎng)店的占調(diào)查總?cè)藬?shù)的
,既開網(wǎng)店又開實(shí)體店的占調(diào)查總?cè)藬?shù)的
,現(xiàn)以此調(diào)查統(tǒng)計(jì)結(jié)果作為概率,若從上述統(tǒng)計(jì)的店主中隨機(jī)抽查了5位,求只開實(shí)體店的人數(shù)的分布列及期望.
【答案】(1)選取方案二更合適(2)
,分布列見解析
【解析】
(1)根據(jù)表中數(shù)據(jù)的特征及相關(guān)系數(shù)絕對值的大小可判斷方案二更合適.
(2)設(shè)只開實(shí)體店的店主人數(shù)為
,則
服從二項(xiàng)分布,利用公式可得分布列及數(shù)學(xué)期望.
(1)選取方案二更合適,理由如下:
①中介紹了,隨著網(wǎng)購的普及,實(shí)體店生意受到了強(qiáng)烈的沖擊,從表格中的數(shù)據(jù)可以看出從2014年開始,純利潤呈現(xiàn)逐年下降的趨勢,可以預(yù)見,2019年的實(shí)體店純利潤收入可能會接著下跌,前四年的增長趨勢已經(jīng)不能作為預(yù)測后續(xù)數(shù)據(jù)的依據(jù).
②相關(guān)系數(shù)
越接近1,線性相關(guān)性越強(qiáng),因?yàn)楦鶕?jù)9年的數(shù)據(jù)得到的相關(guān)系數(shù)的絕對值
,我們沒有理由認(rèn)為
與
具有線性相關(guān)關(guān)系;而后5年的數(shù)據(jù)得到的相關(guān)系數(shù)的絕對值
,所以有
的把握認(rèn)為
與
具有線性相關(guān)關(guān)系.
(僅用①解釋得3分,僅用②解釋或者用①②解釋得6分)
(2)此調(diào)查統(tǒng)計(jì)結(jié)果作為概率,從上述統(tǒng)計(jì)的店主中隨機(jī)抽查了1位,開網(wǎng)店的概率為
,只開實(shí)體店的概率為
,
設(shè)只開實(shí)體店的店主人數(shù)為
,則
,
,
,
,
,
,
,
所以,
的分布列如下:
| 0 | 1 | 2 | 3 | 4 | 5 |
|
|
|
|
|
|
|
∴
,故
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=axlnx﹣x2﹣ax+1(a∈R)在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)設(shè)兩個(gè)極值點(diǎn)分別為x1,x2,x1<x2,證明:f(x1)+f(x2)<2﹣x12+x22.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)設(shè)函數(shù)
,若函數(shù)
在區(qū)間
上存在正的極值,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知矩形
,
為
中點(diǎn),將
至
折起,連結(jié)
.
![]()
(1)當(dāng)
時(shí),求證:
;
(2)當(dāng)
時(shí),求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(I)討論函數(shù)
的單調(diào)性;
(II)當(dāng)
時(shí),證明
(其中e為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
年新冠肺炎疫情期間,某區(qū)政府為了解本區(qū)居民對區(qū)政府防疫工作的滿意度,從本區(qū)居民中隨機(jī)抽取若干居民進(jìn)行評分(滿分
分).根據(jù)調(diào)查數(shù)據(jù)制成如下表格和頻率分布直方圖.已知評分在
的居民有
人.
滿意度評分 |
|
|
|
|
滿意度等級 | 不滿意 | 基本滿意 | 滿意 | 非常滿意 |
![]()
(1)求頻率分布直方圖中
的值及所調(diào)查的總?cè)藬?shù);
(2)定義滿意度指數(shù)
(滿意程度的平均分)/100,若
,則防疫工作需要進(jìn)行大的調(diào)整,否則不需要大調(diào)整.根據(jù)所學(xué)知識判斷該區(qū)防疫工作是否需要進(jìn)行大調(diào)整?
(3)為了解部分居民不滿意的原因,從不滿意的居民(評分在
、
)中用分層抽樣的方法抽取
名居民,傾聽他們的意見,并從
人中抽取
人擔(dān)任防疫工作的監(jiān)督員,求這
人中僅有一人對防疫工作的評分在
內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)n為正整數(shù),集合A=
,
,
,
,
,
.對于集合A中的任意元素
和
,記
.
(Ⅰ)當(dāng)n=3時(shí),若
,
,求
和
的值;
(Ⅱ)當(dāng)
時(shí),對于
中的任意兩個(gè)不同的元素
,
,證明:
.
(Ⅲ)給定不小于2的正整數(shù)n,設(shè)B是A的子集,且滿足:對于B中的任意兩個(gè)不同元素
,
,
.寫出一個(gè)集合B,使其元素個(gè)數(shù)最多,并說明由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高二某班共有45人,學(xué)號依次為1、2、3、…、45,現(xiàn)按學(xué)號用系統(tǒng)抽樣的辦法抽取一個(gè)容量為5的樣本,已知學(xué)號為6、24、33的同學(xué)在樣本中,那么樣本中還有兩個(gè)同學(xué)的學(xué)號應(yīng)為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)討論函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
的圖象與
軸相切,求證:對于任意的
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com