分析 分當(dāng)a=0時(shí)、當(dāng)a>0時(shí)、當(dāng)a<0時(shí)三種情況,分別利用二次函數(shù)的性質(zhì)求得a的范圍,再取并集,即得所求.
解答 解:當(dāng)a=0時(shí),方程即3x=0,求得 x=0,滿(mǎn)足條件.
當(dāng)a>0時(shí),設(shè)f(x)=ax2+3x+4a,則由題意可得$\left\{\begin{array}{l}{△=9-1{6a}^{2}≥0}\\{-\frac{3}{2a}<1}\\{f(1)=3+5a>0}\end{array}\right.$,求得0<a≤$\frac{3}{4}$.
當(dāng)a<0時(shí),設(shè)g(x)=ax2+3x+4a,則由題意可得$\left\{\begin{array}{l}{△=9-1{6a}^{2}≥0}\\{-\frac{3}{2a}<1}\\{g(1)=3+5a<0}\end{array}\right.$,求得a∈∅.
綜上可得,a的范圍為[0,$\frac{3}{4}$].
點(diǎn)評(píng) 本題主要考查一元二次方程根的分布與系數(shù)的關(guān)系,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化、分類(lèi)討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2x+1 | B. | x+2 | C. | -2x+1 | D. | 8x+7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | -1 | C. | 0 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com