| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
分析 根據(jù)題意,利用向量加法的平行四邊形法則得到四邊形ABCD是菱形且∠BAD=120°,因此算出|$\overrightarrow{AB}$|=|$\overrightarrow{DC}$|=$\sqrt{2}$,即可求出四邊形ABCD的面積.
解答 解:因?yàn)樗倪呅蜛BCD,$\overrightarrow{AB}$=$\overrightarrow{DC}$,
所以四邊形ABCD是平行四邊形,
因?yàn)?\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AD}}{|\overrightarrow{AD}|}$=$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$,
所以AC是平行四邊形ABCD的角平分線,平行四邊形為菱形,且∠BAD=120°,
根據(jù)$\overrightarrow{AB}$=(1,1)可得菱形的邊長(zhǎng)為$\sqrt{2}$.
因此四邊形ABCD的面積S=$\sqrt{2}$×$\sqrt{2}$×sin60°=$\sqrt{3}$.
故選:C.
點(diǎn)評(píng) 本題給出四邊形ABCD滿足的向量等式,求四邊形ABCD的面積.著重考查了向量加法的平行四邊形法、向量模的公式與平行四邊形面積求法等知識(shí),屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 在(-∞,+∞)上是增函數(shù) | |
| B. | 在(-∞,+∞)上是減函數(shù) | |
| C. | 在(-∞,0]上是增函數(shù),在[0,+∞)上是減函數(shù) | |
| D. | 在(-∞,0]上是減函數(shù),在[0,+∞)上是增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a=1或2 | B. | a=±1或2 | C. | a=2 | D. | a=$\frac{3-\sqrt{5}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 隨機(jī)變量ξ-N(3,σ2),若P(ξ>6)=0.3,則P(0<ξ<3)=0.2 | |
| B. | 如果一組數(shù)中每個(gè)數(shù)減去同一個(gè)非零常數(shù),則這組數(shù)的平均數(shù)改變,方差不改變 | |
| C. | 對(duì)命題p:?x0∈R,使得x02-x0+1<0,¬p:?x∈R,有x2-x+1≥0 | |
| D. | 命題“在△ABC中,若sinA=sinB,則△ABC為等腰三角形”的否命題為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{7}{9}$ | B. | $\frac{7}{8}$ | C. | $\frac{19}{20}$ | D. | $\frac{8}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com