分析 利用余弦加法定理、二倍角公式和三角函數恒等式求出f(x)=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)-$\frac{1}{2}$,由此能求出f($\frac{π}{3}$)和f(x)的值域.
解答 解:∵f(x)=$\sqrt{2}sinx•cos(x+\frac{π}{4})$
=$\sqrt{2}sinx$(cosxcos$\frac{π}{4}$-sinxsin$\frac{π}{4}$)
=sinx(cosx-sinx)
=sinxcosx-sin2x
=$\frac{1}{2}sin2x$-$\frac{1-cos2x}{2}$
=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)-$\frac{1}{2}$,
∴$f(\frac{π}{2})$=$\frac{\sqrt{2}}{2}sin(π+\frac{π}{4})-\frac{1}{2}$=-$\frac{\sqrt{2}}{2}•\frac{\sqrt{2}}{2}$-$\frac{1}{2}$=-1.
f(x)=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)-$\frac{1}{2}$的值域為$[-\frac{{\sqrt{2}+1}}{2},\frac{{\sqrt{2}-1}}{2}]$.
故答案為:-1,$[-\frac{{\sqrt{2}+1}}{2},\frac{{\sqrt{2}-1}}{2}]$.
點評 本題考查三角函數的值域的求法,是中檔題,解題時要認真審題,注意余弦加法定理、二倍角公式和三角函數恒等式的合理運用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | 自變量取值一定時,因變量的取值帶有一定隨機性的兩個變量之間的關系叫做相關關系 | |
| B. | 在線性回歸分析中,相關系數r的值越大,變量間的相關性越強 | |
| C. | 在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高 | |
| D. | 在回歸分析中,R2為0.98的模型比R2為0.80的模型擬合的效果好 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com