分析 由已知向量的坐標求得$\overrightarrow{a}$•$\overrightarrow$、|$\overrightarrow{a}$+$\overrightarrow$|的最值,代入f(x)=$\overrightarrow{a}$•$\overrightarrow$-|$\overrightarrow{a}$+$\overrightarrow$|,換元后利用配方法求得函數(shù)的最值.
解答 解:∵$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),
∴$\overrightarrow{a}•\overrightarrow=cos\frac{3x}{2}cos\frac{x}{2}-sin\frac{3x}{2}sin\frac{x}{2}$=cos2x,
$\overrightarrow{a}+\overrightarrow=(cos\frac{3x}{2}+cos\frac{x}{2},sin\frac{3x}{2}-sin\frac{x}{2})$,
$|\overrightarrow{a}+\overrightarrow|=\sqrt{(cos\frac{3x}{2}+cos\frac{x}{2})^{2}+(sin\frac{3x}{2}-sin\frac{x}{2})^{2}}$=$\sqrt{2+2cos2x}=2|cosx|$,
∴f(x)=$\overrightarrow{a}$•$\overrightarrow$-|$\overrightarrow{a}$+$\overrightarrow$|=cos2x+2|cosx|,
又x∈[-$\frac{π}{2}$,$\frac{π}{2}$],
∴f(x)=2cos2x+2cosx-1,
令t=cosx(0≤t≤1),
則函數(shù)化為y=$2{t}^{2}+2t-1=2(t+\frac{1}{2})^{2}-\frac{3}{2}$,
∴當t=0時,ymin=-1,當t=1時,ymax=3.
∴函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$-|$\overrightarrow{a}$+$\overrightarrow$|的最小值為-1,最大值為3.
點評 本題考查平面向量的數(shù)量積運算,考查三角函數(shù)中的恒等變換應(yīng)用,訓(xùn)練了利用換元法和配方法求函數(shù)的最值,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{6}$ | B. | $\frac{11}{10}$ | C. | $\frac{13}{14}$ | D. | $\frac{10}{11}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | -1 | C. | $\sqrt{2}$ | D. | ±$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1+2i | B. | 1-2i | C. | 2+2i | D. | 2-2i |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com