分析 設(shè)∠AGM=α,由已知可得AG,∠MAG的值,由正弦定理可得得GM=$\frac{\sqrt{3}}{6sin(α+\frac{π}{6})}$,由SAGM=$\frac{1}{2}$GM•GA•sinα=$\frac{1}{6(\sqrt{3}+cotα)}$=$\frac{1}{12}$,解得:cotα=2-$\sqrt{3}$,又利用正弦定理可得GN=$\frac{\sqrt{3}}{6sin(α-\frac{π}{6})}$,則可求SAGN=$\frac{1}{2}$GN•GA•sin(π-α)=$\frac{1}{6(\sqrt{3}-cotα)}$的值.
解答
解:因為G為邊長為1的正三角形ABC的中心,
所以AG=$\frac{2}{3}×\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{3}$,∠MAG=$\frac{π}{6}$,
由正弦定理$\frac{GM}{sin\frac{π}{6}}=\frac{GA}{sin(π-α-\frac{π}{6})}$,得GM=$\frac{\sqrt{3}}{6sin(α+\frac{π}{6})}$,.
則SAGM=$\frac{1}{2}$GM•GA•sinα=$\frac{sinα}{12sin(α+\frac{π}{6})}$=$\frac{1}{6(\sqrt{3}+cotα)}$)=$\frac{1}{12}$,
解得:cotα=2-$\sqrt{3}$,
又$\frac{GN}{sin\frac{π}{6}}=\frac{GA}{sin(α-\frac{π}{6})}$,得GN=$\frac{\sqrt{3}}{6sin(α-\frac{π}{6})}$,
則SAGN=$\frac{1}{2}$GN•GA•sin(π-α)=$\frac{sinα}{12sin(α-\frac{π}{6})}$=$\frac{1}{6(\sqrt{3}-cotα)}$=$\frac{1}{6(\sqrt{3}-2+\sqrt{3})}$=$\frac{{\sqrt{3}+1}}{24}$.
故答案為:$\frac{{\sqrt{3}+1}}{24}$
點評 本題主要考查了正弦定理,三角形面積公式的綜合應(yīng)用,將△AGM、△AGN的面積表示為α的函數(shù)是解題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{23}{90}$ | B. | $\frac{99}{23}$ | C. | $\frac{8}{15}$ | D. | $\frac{7}{30}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 360 | B. | 180 | C. | 90 | D. | 45 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (0,$\sqrt{2}$] | B. | [$\frac{\sqrt{2}}{2},\sqrt{2}$] | C. | ($\sqrt{2},2$) | D. | (1,$\sqrt{2}$] |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com