分析 利用向量的三角形法則和平行四邊形法則和數(shù)量積得運算即可得出
解答
解:如圖,∵$\overrightarrow{BC}=\overrightarrow{AD},\overrightarrow{EC}=\frac{1}{2}\overrightarrow{AB}$.
∴$\overrightarrow{AC}•\overrightarrow{BE}$=$(\overrightarrow{AB}+\overrightarrow{AD})(\overrightarrow{AD}-\frac{1}{2}\overrightarrow{AB})$=$\overrightarrow{AB}•\overrightarrow{AD}+{\overrightarrow{AD}}^{2}-\frac{1}{2}{\overrightarrow{AB}}^{2}-\frac{1}{2}\overrightarrow{AD}•\overrightarrow{AB}$=1,
化簡得$2{\overrightarrow{AB}}^{2}-|\overrightarrow{AB}|=0$,$|\overrightarrow{AB}|≠0$,所以$|\overrightarrow{AB}|$=$\frac{1}{2}$,
∵$\overrightarrow{BD}=\overrightarrow{AD}-\overrightarrow{AB}$,
∴$|\overrightarrow{BD}{|}^{2}={\overrightarrow{AD}}^{2}+{\overrightarrow{AB}}^{2}-2\overrightarrow{AD}•\overrightarrow{AB}$=1+$\frac{1}{4}$-2×$1×\frac{1}{2}×cos60°$=$\frac{3}{4}$,
所以$|\overrightarrow{BD}|$=$\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$.
點評 本題考查了平面向量的三角形法則以及利用數(shù)量積求線段的長度;熟練掌握向量的三角形法則和平行四邊形法則和數(shù)量積得運算是解題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{5π}{6}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com