欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

5.(1)解不等式|x+1|+|x+3|<4;
(2)若a,b滿足(1)中不等式,求證:2|a-b|<|ab+2a+2b|.

分析 (1)利用絕對值的意義,分類討論,即可解不等式;
(2)利用作差法,即可證明.

解答 (1)解:當(dāng)x<-3時|x+1|+|x+3|=-x-1-x-3=-2x-4<4,
解得x>-4.所以-4<x<-3.
當(dāng)-3≤x<-1時|x+1|+|x+3|=-x-1+x+3=2<4,
解得-3≤x<-1
當(dāng)x≥-1時|x+1|+|x+3|=x+1+x+3=2x+4<4
解得x<0所以-1≤x<0…(4分)
∴不等式|x+1|+|x+3|<4的解集為{x|-4<x<0};…(6分)
(2)證明:4(a-b)2-(ab+2a+2b)2…(7分)
=a2b2+4a2b+4ab2+16ab…(8分)
=ab(b+4)(a+4)>0…(9分)
∴4(a-b)2-(ab+2a+2b)2
∴2|a-b|<|ab+2a+2b|…(10分)

點評 本題考查不等式的解法,考查不等式的證明,考查分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=ax2-(a+2)x+lnx在(0,1)內(nèi)存在極小值,則實數(shù)a的取值范圍是(  )
A.(-∞,2)B.(1,2)C.(1,+∞)D.(1,2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={-1,0,1,2,3,4,5},B={b|b=n2-1,n∈Z},則A∩B=(  )
A.{-1,3}B.{0,3}C.{-1,0,3}D.{-1,0,3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)$f(x)=\frac{1}{{{3^{x-1}}}}-3$是(  )
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)也是偶函數(shù)D.既不是奇函數(shù)也不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某食品店為了了解氣溫對銷售量的影響,隨機(jī)記錄了該店1月份中5天的日銷售量y(單位:千克)與該地當(dāng)日最低氣溫x(單位:°C)的數(shù)據(jù),如下表:
x258911
y1210887
(1)求出y與x的回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)判斷y與x之間是正相關(guān)還是負(fù)相關(guān);若該地1月份某天的最低氣溫為6°C,請用所求回歸方程預(yù)測該店當(dāng)日的銷售量;
(3)設(shè)該地1月份的日最低氣溫X~N(μ,σ2),其中μ近似為樣本平均數(shù)$\overline x$,σ2近似為樣本方差s2,求P(3.8<X<13.4).
附:①回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中,$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{x\overline{y}}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.
②$\sqrt{10}$≈3.2,$\sqrt{3.2}$≈1.8.若X~N(μ,σ2),則P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{-2x+y≤4}\\{4x+3y≤12}\\{y≥1}\end{array}\right.$,則z=2x+y的最小值為(  )
A.$-\frac{1}{2}$B.1C.-2D.$\frac{11}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知b2+c2-a2=$\sqrt{3}$bc.
(1)若tanB=$\frac{\sqrt{6}}{12}$,求$\frac{a}$;
(2)若B=$\frac{2π}{3}$,b=2$\sqrt{3}$,求BC邊上的中線長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知[x]表示不大于x的最大整數(shù),設(shè)函數(shù)f(x)=[log2$\frac{{2}^{x}+1}{9}$],得到下列結(jié)論,
結(jié)論 1:當(dāng) 2<x<3 時,f(x)max=-1.
結(jié)論 2:當(dāng) 4<x<5 時,f(x)max=1
結(jié)論 3:當(dāng) 6<x<7時,f(x)max=3

照此規(guī)律,結(jié)論6為當(dāng) 12<x<13時,f(x)max=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.對于四面體A-BCD,有以下命題:①若AB=AC=AD,則點A在底面BCD內(nèi)的射影是△BCD的外心;②若AB⊥CD,AC⊥BD,則點A在底面BCD內(nèi)的射影是△BCD的內(nèi)心;③四面體A-BCD的四個面中最多有四個直角三角形;④若四面體A-BCD的6條棱長都為1,則它的內(nèi)切球的表面積為$\frac{π}{6}$.其中正確的命題是( 。
A.①③B.③④C.①②③D.①③④

查看答案和解析>>

同步練習(xí)冊答案