分析 由二項展開式的通項公式Tr+1=${C}_{n}^{r}$•(-1)rxr,可得an=(-1)r•${C}_{n}^{r}$,于是有2(-1)2${C}_{n}^{2}$+(-1)n-3${C}_{n}^{3}$=0,由此可解得自然數(shù)n的值.
解答 解:由題意得,該二項展開式的通項公式Tr+1=${C}_{n}^{r}$•(-1)rxr,
∴其系數(shù)an=(-1)r•${C}_{n}^{r}$,
∵2a2+an-3=0,
∴2(-1)2${C}_{n}^{2}$+(-1)n-3${C}_{n}^{3}$=0,
∴2×$\frac{n(n-1)}{2}$-$\frac{n(n-1)(n-2)}{6}$=0,
∴n-2=6.
∴n=8.
故答案為:8
點(diǎn)評 本體考察二項式定理的應(yīng)用,著重考察二項式系數(shù)的概念與應(yīng)用,由二項展開式的通項公式得到系數(shù)an=(-1)r•${C}_{n}^{r}$是關(guān)鍵,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
| 學(xué)生 | 1號 | 2號 | 3號 | 4號 | 5號 |
| 甲班 | 6 | 5 | 7 | 9 | 8 |
| 乙班 | 4 | 8 | 9 | 7 | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{4000}{3}c{m}^{3}$ | B. | $\frac{8000}{3}c{m}^{3}$ | C. | 2000cm3 | D. | 4000cm3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | p1∧p2 | B. | p1∧(¬p2) | C. | (¬p1)∨p2 | D. | (¬p1)∨(¬p2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 45° | B. | 60° | C. | 135° | D. | 150° |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com