欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.已知焦點(diǎn)在x軸上的橢圓$E:\frac{x^2}{4}+\frac{y^2}{b^2}=1$,且離心率為$\frac{{\sqrt{6}}}{3}$,若△ABC的頂點(diǎn)A,B在橢圓E上,C在直線L:y=x+2上,且AB∥L.
(1)當(dāng)AB邊通過坐標(biāo)原點(diǎn)O時(shí),求AB的長(zhǎng)及△ABC的面積;
(2)當(dāng)∠ABC=90°,且斜邊AC的長(zhǎng)最大時(shí),求AB所在直線的方程.

分析 (1)利用離心率求出短半軸的長(zhǎng),得到橢圓方程,利用AB∥l,求出AB所在直線的方程為y=x.設(shè)A,B兩點(diǎn)坐標(biāo)分別為(x1,y1),(x2,y2).由$\left\{\begin{array}{l}{x^2}+3{y^2}=4\\ y=x\end{array}\right.$求出|AB|,然后求解三角形的面積.
(2)設(shè)AB所在直線的方程為y=x+m,由$\left\{\begin{array}{l}{x^2}+3{y^2}=4\\ y=x+m\end{array}\right.$,設(shè)A,B兩點(diǎn)坐標(biāo)分別為(x1,y1),(x2,y2),利用韋達(dá)定理以及弦長(zhǎng)公式,轉(zhuǎn)化表示|AC|2=|AB|2+|BC|2=-m2-2m+10=-(m+1)2+11.然后求解最值即可.

解答 解:(1)因?yàn)殡x心率$e=\frac{{\sqrt{6}}}{3}$,所以${e^2}=1-\frac{b^2}{4}$,則${b^2}=\frac{4}{3}$
所以橢圓E的方程為x2+3y2=4…(2分)
因?yàn)锳B∥l,且AB邊通過點(diǎn)(0,0),所以AB所在直線的方程為y=x.
設(shè)A,B兩點(diǎn)坐標(biāo)分別為(x1,y1),(x2,y2).
由$\left\{\begin{array}{l}{x^2}+3{y^2}=4\\ y=x\end{array}\right.$得x=±1.
所以|AB|=$\sqrt{2}|{{x_1}-{x_2}}|=2\sqrt{2}$. …(4分)
又因?yàn)锳B邊上的高h(yuǎn)等于原點(diǎn)到直線l的距離.
所以h=$\sqrt{2}$,S△ABC=$\frac{1}{2}\left|{AB}\right.$|•h=2. …(6分)
(2)設(shè)AB所在直線的方程為y=x+m,
由$\left\{\begin{array}{l}{x^2}+3{y^2}=4\\ y=x+m\end{array}\right.$得4x2+6mx+3m2-4=0.
因?yàn)锳,B在橢圓上,
所以△=-12m2+64>0.
設(shè)A,B兩點(diǎn)坐標(biāo)分別為(x1,y1),(x2,y2),
則x1+x2=$-\frac{3m}{2}$,x1x2=$\frac{{3{m^2}-4}}{4}$,…(8分)
所以|AB|=$\sqrt{2}|{{x_1}-{x_2}}|=\frac{{\sqrt{32-6{m^2}}}}{2}$.
又因?yàn)锽C的長(zhǎng)等于點(diǎn)(0,m)到直線l的距離,即|BC|=$\frac{{|{2-m}|}}{{\sqrt{2}}}$…(10分)
所以|AC|2=|AB|2+|BC|2=-m2-2m+10=-(m+1)2+11.
所以當(dāng)m=-1時(shí),AC邊最長(zhǎng),(這時(shí)△=-12+64>0)
此時(shí)AB所在直線的方程為y=x-1. …(12分)

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì)的應(yīng)用,直線與橢圓的位置關(guān)系的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知loga9=-2,則a的值為(  )
A.-3B.$-\frac{1}{3}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.以下四個(gè)命題中:
①在回歸分析中,可用相關(guān)指數(shù)R2的值判斷的擬合效果,R2越大,模型的擬合效果越好;
②兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對(duì)值越接近1;
③若數(shù)據(jù)x1,x2,x3,…,xn的方差為1,則2x1,2x2,2x3,…,2xn的方差為2;
④對(duì)分類變量x與y的隨機(jī)變量k2的觀測(cè)值k來說,k越小,判斷“x與y有關(guān)系”的把握程度越大.
其中真命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,A=$\frac{π}{3}$,AB=4,△ABC的面積為2$\sqrt{3}$,則△ABC的外接圓的半徑為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}滿足a1=1,an+1=$\frac{a_n}{{1+{a_n}}}$,(n∈N*
(1)證明數(shù)列$\left\{{\frac{1}{a_n}}\right\}$是等差數(shù)列,并求出通項(xiàng)an
(2)若$\frac{2}{3}$<a1•a2+a2•a3+a3•a4+…+an-1•an<$\frac{5}{6}$,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知等比數(shù)列{an}滿足2a3+a5=3a4,且a3+2是a2與a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{{a}_{n}}{{(a}_{n}-1){(a}_{n+1}-1)}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若一扇形的圓心角為72°,半徑為20cm,則扇形的面積為( 。
A.40π cm2B.80π cm2C.40cm2D.80cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}的首項(xiàng)a1=1,且滿足${a_1}+{a_2}+{a_2}+…+{a_n}=\frac{{n{a_{n+1}}}}{2}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且${b_n}=\frac{1}{S_n}$,令Tn=b1+b2+…+bn,求證:Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某手機(jī)廠商推出一款6寸大屏手機(jī),現(xiàn)對(duì)500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對(duì)手機(jī)進(jìn)行打分,打分的頻數(shù)分布表如表:
女性用戶:
分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)2040805010
男性用戶
分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)4575906030
(Ⅰ)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評(píng)分的波動(dòng)大。ú灰笥(jì)算具體值,給出結(jié)論即可);

(Ⅱ)根據(jù)評(píng)分的不同,運(yùn)用分層抽樣從男性用戶中抽取20名用戶,再?gòu)倪@20名用戶中滿足評(píng)分不低于80分的用戶中任意抽取2名用戶,求2名用戶評(píng)分都小于90分的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案