欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

5.已知M,N為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右頂點(diǎn),P(異于點(diǎn)M,N)是雙曲線上任意一點(diǎn),記直線PM,PN的斜率分別為k1,k2,則當(dāng)e${\;}^{{k}_{1}}$${\;}^{{k}_{2}}$-1-ln(k1k2)取最小值時(shí),雙曲線離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{2}$+1

分析 設(shè)M(-a,0),N(a,0),P(x,y),得到k1k2=$\frac{^{2}}{{a}^{2}}$>0,構(gòu)造函數(shù)y=ex-1-lnx,利用導(dǎo)數(shù)性質(zhì)能求出雙曲線的離心率.

解答 解:設(shè)M(-a,0),N(a,0),P(x,y)
由題意,k1=$\frac{y}{x+a}$,k2=$\frac{y}{x-a}$
∴k1k2=$\frac{{y}^{2}}{{x}^{2}-{a}^{2}}$,
∵點(diǎn)P在雙曲線上,
∴k1k2=$\frac{^{2}}{{a}^{2}}$>0,
對(duì)于函數(shù)y=ex-1-lnx,
由y′=ex-1-$\frac{1}{x}$=0,得x=1,
x>1時(shí),y′>0,0<x<1時(shí),y′<0,
∴當(dāng)x=1時(shí),函數(shù)y=ex-1-lnx(x>0)取得最小值1,
∴$\frac{^{2}}{{a}^{2}}$=1,
∴e=$\sqrt{2}$.
故選:A.

點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,涉及到導(dǎo)數(shù)、最值、雙曲線、離心率等知識(shí)點(diǎn),綜合性強(qiáng),難度大,解題時(shí)要注意構(gòu)造法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1}{{4}^{x}+2}$(x∈R).
(1)若數(shù)列{an}的通項(xiàng)公式為an=f($\frac{n}{m}$)(m∈N+,n=1,2,…,m),求數(shù)列{an}的前m項(xiàng)和Sm
(2)設(shè)數(shù)列{bn}滿足:b1=$\frac{1}{3}$,bn+1=bn2+bn.設(shè)Tn=$\frac{1}{_{1}+1}$+$\frac{1}{_{2}+1}$+…+$\frac{1}{_{n}+1}$.若(1)中的Sn滿足對(duì)任意不小于2的正整數(shù)n,Sn<Tn恒成立,試求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知z∈C,|z-(1+i)|=1,則|z+2+3i|的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在平面直角坐標(biāo)系xOy中,四邊形ABCD的頂點(diǎn)都在橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上,對(duì)角線AC與BD分別過(guò)橢圓的左焦點(diǎn)F1(-1,0)和右焦點(diǎn)F2(1,0),且AC⊥BD,橢圓的一條準(zhǔn)線方程為x=4.
(1)求橢圓的方程;
(2)求四邊形ABCD面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知數(shù)列{an}是正項(xiàng)等差數(shù)列,若cn=$\frac{{{a_1}+2{a_2}+3{a_3}+…+n{a_n}}}{1+2+3+…n}$,則數(shù)列{cn}也為等差數(shù)列.已知數(shù)列{bn}是正項(xiàng)等比數(shù)列,類比上述結(jié)論可得(  )
A.若{dn}滿足dn=$\frac{{{b_1}+2{b_2}+3{b_3}+…+n{b_n}}}{1+2+3+…n}$,則{dn}也是等比數(shù)列
B.若{dn}滿足dn=$\frac{{{b_1}•2{b_2}•3{b_3}•…•n{b_n}}}{1•2•3•…•n}$,則{dn}也是等比數(shù)列
C.若{dn}滿足${d_n}={[{b_1}•(2{b_2})•(3{b_3})•…•(n{b_n})]^{\frac{1}{1+2+…+n}}}$,則{dn}也是等比數(shù)列
D.若{dn}滿足${d_n}={[{b_1}•{b_2}^2•{b_3}^3•…•{b_n}^n]^{\frac{1}{1+2+…+n}}}$,則{dn}也是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,0)、B(1,0),動(dòng)點(diǎn)C滿足條件:△ABC的周長(zhǎng)為2+2$\sqrt{2}$.記動(dòng)點(diǎn)C的軌跡為曲線了.
(Ⅰ)求曲線T的方程;
(Ⅱ)已知點(diǎn)M( $\sqrt{2}$,0),N(0,1),是否存在經(jīng)過(guò)點(diǎn)(0,$\sqrt{2}$)且斜率為k的直線l與曲線T有兩個(gè)不同的交點(diǎn)P和Q,使得向量$\overrightarrow{OP}$+$\overrightarrow{OQ}$與$\overrightarrow{MN}$共線?如果存在,求出k的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且過(guò)點(diǎn)($\sqrt{2}$,$\frac{\sqrt{2}}{2}$).
(1)求橢圓方程;
(2)設(shè)不過(guò)原點(diǎn)O的直線l:y=kx+m(k≠0),與該橢圓交于P、Q兩點(diǎn),直線OP、OQ的斜率依次為k1、k2,滿足4k=k1+k2,試問(wèn):當(dāng)k變化時(shí),m2是否為定值?若是,求出此定值,并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知點(diǎn)B是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點(diǎn),F(xiàn)1,F(xiàn)2分別是橢圓的左右焦點(diǎn),直線BF1,BF2與橢圓分別交于E,F(xiàn)兩點(diǎn),△BEF為等邊三角形.
(1)求橢圓C的離心率;
(2)已知點(diǎn)(1,$\frac{3}{2}$)在橢圓C上,且直線l:y=kx+m與橢圓C交于M、N兩點(diǎn),若直線F1M,F(xiàn)2N的傾斜角分別為α,β,且α+β=$\frac{π}{2}$,求證:直線l過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)y=g(x)與f(x)=loga(x+1)(0<a<1)的圖象關(guān)于原點(diǎn)對(duì)稱
(Ⅰ)求y=g(x)的解析式;
(Ⅱ)函數(shù)F(x)=f(x)+g(x),解不等式F(t2-2t)+F(2t2-1)<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案