分析 (I)設(shè)等差數(shù)列{an}的公差為d,由a5=14,a7=20.可得$\left\{\begin{array}{l}{{a}_{1}+4d=14}\\{{a}_{1}+6d=20}\end{array}\right.$,解出即可得出;
(II)bn=$\frac{1}{{{a}_{n}a}_{n+1}}$=$\frac{1}{(3n-1)(3n+2)}$=$\frac{1}{3}(\frac{1}{3n-1}-\frac{1}{3n+2})$,利用“裂項(xiàng)求和”即可得出.
解答 解:(I)設(shè)等差數(shù)列{an}的公差為d,
∵a5=14,a7=20.
∴$\left\{\begin{array}{l}{{a}_{1}+4d=14}\\{{a}_{1}+6d=20}\end{array}\right.$,解得a1=2,d=3.
∴an=2+3(n-1)=3n-1.
(II)bn=$\frac{1}{{{a}_{n}a}_{n+1}}$=$\frac{1}{(3n-1)(3n+2)}$=$\frac{1}{3}(\frac{1}{3n-1}-\frac{1}{3n+2})$,
∴數(shù)列{bn}的前n項(xiàng)和Sn=$\frac{1}{3}[(\frac{1}{2}-\frac{1}{5})$+$(\frac{1}{5}-\frac{1}{8})$+…+$(\frac{1}{3n-1}-\frac{1}{3n+2})]$
=$\frac{1}{3}(\frac{1}{2}-\frac{1}{3n+2})$
=$\frac{n}{2(3n+2)}$.
點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”,考查了推理能力與計(jì)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-∞,-2)∪($\frac{1}{3}$,+∞) | B. | (-2,$\frac{1}{3}$) | C. | [-2,$\frac{1}{3}$) | D. | (-2,$\frac{1}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ①,②,③ | B. | ②,③,④ | C. | ③,④ | D. | ② |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5 | B. | 5π | C. | $\frac{4}{5}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com