欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

16.已知數(shù)列{an}前n項和為Sn,滿足Sn=2an-2n(n∈N*).
(I)證明:{an+2}是等比數(shù)列,并求{an}的通項公式;
(Ⅱ)數(shù)列{bn}滿足bn=log2(an+2),Tn為數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項和,若Tn<a對正整數(shù)a都成立,求a的取值范圍.

分析 (Ⅰ)運用數(shù)列的通項和前n項和的關(guān)系,變形整理即可得到{an+2}是等比數(shù)列,由等比數(shù)列的通項公式,即可求得;
(Ⅱ)運用對數(shù)的運算性質(zhì),化簡bn,再由裂項相消求和,即可得到Tn,運用不等式恒成立思想即可得到a的范圍.

解答 (Ⅰ)證明:由題設(shè)Sn=2an-2n(n∈N*),
Sn-1=2an-1-2(n-1),n≥2,
兩式相減得an=2an-1+2,
即an+2=2(an-1+2),
又a1+2=4,
所以{an+2}是以4為首項,2為公比的等比數(shù)列,
an+2=4•2n-1,即an=2n+1-2(n≥2)
又a1=2,所以an=2n+1-2(n∈N*);
(Ⅱ)解:因為bn=log2(an+2)=log22n+1=n+1,
即有$\frac{1}{_{n}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,
故Tn=$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n+1}$-$\frac{1}{n+2}$=$\frac{1}{2}$-$\frac{1}{n+2}$<$\frac{1}{2}$,
依題意得:a≥$\frac{1}{2}$.

點評 本題考查等比數(shù)列的通項公式和數(shù)列求和的方法:裂項相消求和,同時考查不等式恒成立思想轉(zhuǎn)化為最值,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知角α的終邊在第二象限,且sinα=$\frac{4}{5}$,則tanα等于(  )
A.$\frac{3}{4}$B.-$\frac{3}{4}$C.$\frac{4}{3}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.一個幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積為$\frac{28}{3}π$cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.圓周上有2n個等分點(n>2),任取3點可得一個三角形,恰為直角三角形的個數(shù)為2n(n-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且a,b,c成等比數(shù)列.若sinB=$\frac{5}{13}$,cosB=$\frac{12}{ac}$,則a+c=( 。
A.$\sqrt{37}$B.$\sqrt{13}$C.3$\sqrt{7}$D.2$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)y=f(x)(x∈R)是奇函數(shù),其部分圖象如圖所示,則在(-2,0)上與函數(shù)
f(x)的單調(diào)性相同的是( 。
A.y=x2+1B.y=log2|x|
C.$y=\left\{\begin{array}{l}{e^x}(x≥0)\\{e^{-x}}(x<0)\end{array}\right.$D.y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知直線l和曲線Γ的極坐標(biāo)方程分別為ρ(sinθ-cosθ)=1和ρ=1,若l和Γ相交于兩點A,B,則|AB|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.己知二次函數(shù)f(x)=ax2+bx+1,其中a,b∈R,g(x)=ln(ex),且函數(shù)F(x)=f(x)-g(x)在x=1處取得極值.
(Ⅰ)求a,b所滿足的關(guān)系;
(Ⅱ)試判斷是否存在a∈(-2,0)∪(0,2),使得對?x∈[1,2],不等式(x+a)F(x)≥0恒成立?如果存在,請求出符合條件的a的所有值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=x\sqrt{{x^2}-2ax+{a^2}}-1,(a∈R)$
(1)當(dāng)a=1時,解不等式f(x)<x-1;
(2)當(dāng)a>0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若在區(qū)間(0,1]上,函數(shù)f(x)的圖象總在直線y=m(m∈R,m是常數(shù))的下方,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案