分析 (1)求出函數(shù)的導(dǎo)函數(shù),利用f′(0)=-2,求解m即可,然后判斷函數(shù)的單調(diào)性,求解函數(shù)的極值.
(2)化簡(jiǎn)導(dǎo)函數(shù)為(2x+1)2f′(x)=2-2[m+ln(2x+1)],構(gòu)造函數(shù)g(x)=2-2[m+ln(2x+1)],通過(guò)形式的導(dǎo)數(shù),判斷函數(shù)的單調(diào)性,求出函數(shù)的最值與極值,通過(guò)函數(shù)的零點(diǎn)求解即可.
解答 解:(1)由$f(x)=\frac{m+ln(2x+1)}{2x+1}$.可得$f′(x)=\frac{{2-2[{m+ln(2x+1)}]}}{{{{(2x+1)}^2}}}$,
由條件可得f′(0)=2-2m=-2,解得m=2….…(2分)
則$f(x)=\frac{2+ln(2x+1)}{2x+1}.(x>-\frac{1}{2})$,$f′(x)=\frac{{2-2[{2+ln(2x+1)}]}}{{{{(2x+1)}^2}}}=\frac{-2-2ln(2x+1)}{{{{(2x+1)}^2}}}$,
由f′(x)>0可得ln(2x+1)<-1,即$-\frac{1}{2}<x<\frac{1-e}{2e}$,f′(x)<0可得ln(2x+1)>-1,即 $x>\frac{1-e}{2e}$,…..…(4分)
∴f(x)在($-\frac{1}{2},\frac{1-e}{2e}$)上單調(diào)遞增,在($\frac{1-e}{2e},+∞$)上單調(diào)遞減,
∴f(x)的極大值為$f(\frac{1-e}{2e})=e$,無(wú)極小值. …..(5分)
(2)由$f′(x)=\frac{{2-2[{m+ln(2x+1)}]}}{{{{(2x+1)}^2}}}$,可得(2x+1)2f′(x)=2-2[m+ln(2x+1)],
令g(x)=2-2[m+ln(2x+1)],則$g′(x)=-\frac{4}{2x+1}$,又$x>-\frac{1}{2}$,∴g′(x)<0,
∴g(x)在$[{\frac{e-1}{2},\frac{{{e^2}-1}}{2}}]$上單調(diào)遞減.
∴g(x)=2-2[m+ln(2x+1)]在$[{\frac{e-1}{2},\frac{{{e^2}-1}}{2}}]$上的最大值為$g(\frac{e-1}{2})=-2m$,
最小值為$g(\frac{{{e^2}-1}}{2})=-2m-2$….…(8分)
令h(t)=lnt+t2-3t,則$h′(t)=\frac{(2t-1)(t-1)}{t}$,
令h′(t)=0可得$t=\frac{1}{2}$或t=1h(t),h′(t)隨t的變化情況如下表所示:
| t | ($0,\frac{1}{2}$) | $\frac{1}{2}$ | ($\frac{1}{2},1$) | 1 | (1,+∞) |
| h′(t) | + | 0 | - | 0 | + |
| h(t) | 遞增 | 極大值 | 遞減 | 極小值 | 遞增 |
點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的綜合應(yīng)用,函數(shù)的單調(diào)性函數(shù)的極值與最值,構(gòu)造法的應(yīng)用,考查轉(zhuǎn)化思想以及分析問(wèn)題解決問(wèn)題的能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (-∞,1)∪(9,+∞) | B. | (1,9) | C. | (0,1)∪(9,+∞) | D. | (0,1]∪[9,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 18 | B. | 17 | C. | 16 | D. | 15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3x+y-5=0 | B. | x+3y-7=0 | C. | x-3y+5=0 | D. | x-3y-5=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com