欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

3.已知f(x)=$\frac{m+ln(2x+1)}{2x+1}$.(m∈R)
(1)若曲線(xiàn)y=f(x)在x=0處的切線(xiàn)與直線(xiàn)x-2y-2016=0垂直,求函數(shù)f(x)的極值;
(2)若關(guān)于t的函數(shù)F(t)=lnt+t2-3t-$\frac{1}{2016}{(2x+1)^2}$f′(x)在$x∈[{\frac{e-1}{2},\frac{{{e^2}-1}}{2}}]$時(shí)恒有3個(gè)不同的零點(diǎn),試求實(shí)數(shù)m的范圍.(f′(x)為f(x)的導(dǎo)函數(shù),e是自然對(duì)數(shù)的底數(shù))

分析 (1)求出函數(shù)的導(dǎo)函數(shù),利用f′(0)=-2,求解m即可,然后判斷函數(shù)的單調(diào)性,求解函數(shù)的極值.
(2)化簡(jiǎn)導(dǎo)函數(shù)為(2x+1)2f′(x)=2-2[m+ln(2x+1)],構(gòu)造函數(shù)g(x)=2-2[m+ln(2x+1)],通過(guò)形式的導(dǎo)數(shù),判斷函數(shù)的單調(diào)性,求出函數(shù)的最值與極值,通過(guò)函數(shù)的零點(diǎn)求解即可.

解答 解:(1)由$f(x)=\frac{m+ln(2x+1)}{2x+1}$.可得$f′(x)=\frac{{2-2[{m+ln(2x+1)}]}}{{{{(2x+1)}^2}}}$,
由條件可得f′(0)=2-2m=-2,解得m=2….…(2分)
則$f(x)=\frac{2+ln(2x+1)}{2x+1}.(x>-\frac{1}{2})$,$f′(x)=\frac{{2-2[{2+ln(2x+1)}]}}{{{{(2x+1)}^2}}}=\frac{-2-2ln(2x+1)}{{{{(2x+1)}^2}}}$,
由f′(x)>0可得ln(2x+1)<-1,即$-\frac{1}{2}<x<\frac{1-e}{2e}$,f′(x)<0可得ln(2x+1)>-1,即 $x>\frac{1-e}{2e}$,…..…(4分)
∴f(x)在($-\frac{1}{2},\frac{1-e}{2e}$)上單調(diào)遞增,在($\frac{1-e}{2e},+∞$)上單調(diào)遞減,
∴f(x)的極大值為$f(\frac{1-e}{2e})=e$,無(wú)極小值.   …..(5分)
(2)由$f′(x)=\frac{{2-2[{m+ln(2x+1)}]}}{{{{(2x+1)}^2}}}$,可得(2x+1)2f′(x)=2-2[m+ln(2x+1)],
令g(x)=2-2[m+ln(2x+1)],則$g′(x)=-\frac{4}{2x+1}$,又$x>-\frac{1}{2}$,∴g′(x)<0,
∴g(x)在$[{\frac{e-1}{2},\frac{{{e^2}-1}}{2}}]$上單調(diào)遞減.
∴g(x)=2-2[m+ln(2x+1)]在$[{\frac{e-1}{2},\frac{{{e^2}-1}}{2}}]$上的最大值為$g(\frac{e-1}{2})=-2m$,
最小值為$g(\frac{{{e^2}-1}}{2})=-2m-2$….…(8分)
令h(t)=lnt+t2-3t,則$h′(t)=\frac{(2t-1)(t-1)}{t}$,
令h′(t)=0可得$t=\frac{1}{2}$或t=1h(t),h′(t)隨t的變化情況如下表所示:

t($0,\frac{1}{2}$)$\frac{1}{2}$($\frac{1}{2},1$)1(1,+∞)
h′(t)+    0-    0+
h(t)遞增極大值遞減極小值遞增
由上表可知h(t)=lnt+t2-3t的極大值為$h(\frac{1}{2})=-ln2-\frac{5}{4}$,極小值為h(1)=-2….(10分)
要使F(t)有三個(gè)不同的零點(diǎn),則有$\left\{\begin{array}{l}\frac{1}{2016}(-2-2m)>-2\\ \frac{1}{2016}(-2m)<-ln2-\frac{5}{4}\end{array}\right.$,
解得:1260+1008•ln2<m<2015….…(12分).

點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的綜合應(yīng)用,函數(shù)的單調(diào)性函數(shù)的極值與最值,構(gòu)造法的應(yīng)用,考查轉(zhuǎn)化思想以及分析問(wèn)題解決問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某射擊游戲規(guī)則如下:①射手共射擊三次:;②首先射擊目標(biāo)甲;③若擊中,則繼續(xù)射擊該目標(biāo),若未擊中,則射擊另一目標(biāo);④擊中目標(biāo)甲、乙分別得2分、1分,未擊中得0分.已知某射手擊中甲、乙目標(biāo)的概率分別為$\frac{1}{2},\frac{3}{4}$,且該射手每次射擊的結(jié)果互不影響.
(Ⅰ)求該射手連續(xù)兩次擊中目標(biāo)且另一次未擊中目標(biāo)的概率;
(Ⅱ)記該射手所得分?jǐn)?shù)為X,求X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知等比數(shù)列{an}中,a1=4,a5a7=4a82,則a3=( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{x}{a}$-ex(a>0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在[1,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知${log_{\frac{1}{2}}}$(x+y+4)<${log_{\frac{1}{2}}}$(3x+y-2),若x-y<λ+$\frac{9}{λ}$恒成立,則λ的取值范圍是(  )
A.(-∞,1)∪(9,+∞)B.(1,9)C.(0,1)∪(9,+∞)D.(0,1]∪[9,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S4=8,S8=20,則a9+a10+a11+a12=( 。
A.18B.17C.16D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知實(shí)數(shù)p滿(mǎn)足(2p+1)(p+2)<0,試判斷方程x2-2x+5-p2=0有無(wú)實(shí)數(shù)根,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.過(guò)點(diǎn)p(1,2)且與直線(xiàn)3x+y-1=0平行的直線(xiàn)方程是( 。
A.3x+y-5=0B.x+3y-7=0C.x-3y+5=0D.x-3y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)直線(xiàn)y=kx+3與y=$\frac{1}{k}$x-5的交點(diǎn)在直線(xiàn)y=x上,求實(shí)數(shù)k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案