分析 (1)若直線l的斜率不存在,則直線l:x=1,符合題意;若直線l的斜率存在,設(shè)直線l的方程為kx-y-k=0.由題意知,圓心(3,4)到已知直線l的距離等于半徑2,由此利用點(diǎn)到直線的距離公式得$k=\frac{3}{4}$,從而求出直線的方程.
(2)設(shè)直線方程為kx-y-k=0,由弦長(zhǎng)|PQ|求出弦心距$d=\sqrt{2}$,由此利用點(diǎn)到直線距離公式求出k=1或k=7,從而能求出直線l的方程.
解答 解:(1)若直線l的斜率不存在,則直線l:x=1,符合題意.
若直線l的斜率存在,設(shè)直線l的方程為y=k(x-1),即kx-y-k=0.
由題意知,圓心(3,4)到已知直線l的距離等于半徑2,
即:$\frac{{|{3k-4-k}|}}{{\sqrt{{k^2}+1}}}=2$,解得$k=\frac{3}{4}$,此時(shí)直線的方程為3x-4y-3=0.
綜上可得,所求直線l的方程是x=1或3x-4y-3=0.----(6分)
(2)直線與圓相交,斜率必定存在,且不為0,設(shè)直線方程為kx-y-k=0,
∵$|{PQ}|=2\sqrt{{r^2}-{d^2}}=2\sqrt{2}$,∴弦心距$d=\sqrt{2}$,即$\frac{{|{3k-4-k}|}}{{\sqrt{{k^2}+1}}}=2\sqrt{2}$,
解得k=1或k=7,
所求直線l的方程為x-y-1=0或7x-y-7=0.----(12分)
點(diǎn)評(píng) 本題考查直線方程的求法,考查直線方程、圓、點(diǎn)到直線的距離公式的應(yīng)用等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
| 溫度x/°C | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
| 產(chǎn)卵數(shù)y/個(gè) | 6 | 10 | 21 | 24 | 64 | 113 | 322 |
| t=x2 | 400 | 484 | 576 | 676 | 784 | 900 | 1024 |
| z=lny | 1.79 | 2.30 | 3.04 | 3.18 | 4.16 | 4.73 | 5.77 |
| $\overline x$ | $\overline t$ | $\overline y$ | $\overline z$ |
| 26 | 692 | 80 | 3.57 |
| $\frac{{\sum_{i=1}^7{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^7{{{({x_i}-\overline x)}^2}}}}$ | $\frac{{\sum_{i=1}^7{({t_i}-\overline t)({y_i}-\overline y)}}}{{\sum_{i=1}^7{{{({t_i}-\overline t)}^2}}}}$ | $\frac{{\sum_{i=1}^7{({z_i}-\overline z)({x_i}-\overline x)}}}{{\sum_{i=1}^7{{{({x_i}-\overline x)}^2}}}}$ | $\frac{{\sum_{i=1}^7{({z_i}-\overline z)({t_i}-\overline t)}}}{{\sum_{i=1}^7{{{({t_i}-\overline t)}^2}}}}$ |
| 1157.54 | 0.43 | 0.32 | 0.00012 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{\sqrt{5}}{3}$ | B. | $\frac{\sqrt{5}}{5}$ | C. | $\frac{\sqrt{5}}{10}$ | D. | $\frac{\sqrt{5}}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | {x|x≠$\frac{π}{4}$} | B. | {x|x≠$\frac{π}{4}$,k∈Z} | C. | {x|x≠kπ+$\frac{π}{4}$,k∈Z} | D. | {x|x≠$\frac{3π}{4}$+kπ,k∈Z} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -1 | B. | 0 | C. | 1 | D. | π |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com