欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

6.已知橢圓$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{9}$=1和點(diǎn)P(4,2),直線l經(jīng)過點(diǎn)P且與橢圓交于A,B兩點(diǎn).
(1)當(dāng)直線l的斜率為$\frac{1}{2}$時(shí),求線段AB的長(zhǎng)度;
(2)當(dāng)P點(diǎn)恰好為線段AB的中點(diǎn)時(shí),求l的方程.

分析 (1)設(shè)出直線方程,代入橢圓方程,解方程可得交點(diǎn)坐標(biāo),由兩點(diǎn) 的距離公式即可得到弦長(zhǎng);
(2)運(yùn)用點(diǎn)差法,求得直線的斜率,即可得到直線方程.

解答 解:(1)直線l的方程為y-2=$\frac{1}{2}$(x-4),即為y=$\frac{1}{2}$x,
代入橢圓方程x2+4y2=36,可得
x=±3$\sqrt{2}$,y=±$\frac{3\sqrt{2}}{2}$.
即有|AB|=$\sqrt{(6\sqrt{2})^{2}+(3\sqrt{2})^{2}}$=3$\sqrt{10}$;
(2)由P的坐標(biāo),可得$\frac{16}{36}$+$\frac{4}{9}$<1,可得P在橢圓內(nèi),
設(shè)A(x1,y1),B(x2,y2),
則$\frac{{{x}_{1}}^{2}}{36}$+$\frac{{{y}_{1}}^{2}}{9}$=1,①$\frac{{{x}_{2}}^{2}}{36}$+$\frac{{{y}_{2}}^{2}}{9}$=1,②
由中點(diǎn)坐標(biāo)公式可得x1+x2=8,y1+y2=4,③
由①-②可得,$\frac{({x}_{1}-{x}_{2})({x}_{1}+{x}_{2})}{36}$+$\frac{({y}_{1}-{y}_{2})({y}_{1}+{y}_{2})}{9}$=0,④
將③代入④,可得
kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{1}{2}$,
則所求直線的方程為y-2=-$\frac{1}{2}$(x-4),
即為x+2y-8=0.

點(diǎn)評(píng) 本題考查直線和橢圓的位置關(guān)系,考查弦長(zhǎng)和直線方程的求法,注意運(yùn)用聯(lián)立方程和點(diǎn)差法的運(yùn)用,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知數(shù)列{an}的通項(xiàng)公式an=33-6n,Sn=|a1|+|a2|+…+|an|,則S9=123.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=x2-2ax+b2的最小值為0,若關(guān)于x的不等式f(x)<c的解集為(t,t+4),則實(shí)數(shù)c的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的虛半軸長(zhǎng)為1,離心率e=$\frac{2\sqrt{3}}{3}$,左、右焦點(diǎn)分別為F1,F(xiàn)2
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)若過右焦點(diǎn)F2作垂直于x軸的直線1,交雙曲線于A、B兩點(diǎn),求|AB|的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若a<1,b>1,那么下列命題中正確的是(  )
A.$\frac{1}{a}$>$\frac{1}$B.$\frac{a}$>1C.a2<b2D.ab<a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.判斷下列方程是否表示雙曲線?若是,求出a、b、c及焦點(diǎn)坐標(biāo).
(1)$\frac{x^2}{4}$-$\frac{y^2}{2}$=1
 (2)$\frac{y^2}{2}$-$\frac{x^2}{2}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\frac{3-m•{3}^{x}}{{3}^{x}}$,且函數(shù)g(x)=loga(x2+x+2)(a>0,且a≠1)在[-$\frac{1}{4}$,1]上的最大值為2,若對(duì)任意x1∈[-1,2],存在x2∈[0,3],使得f(x1)≥g(x2),則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,-$\frac{2}{3}$]B.(-∞,$\frac{1}{3}$]C.[$\frac{1}{3}$,+∞)D.[-$\frac{1}{3}$,+∞]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.λ∈R,下列關(guān)系正確的是( 。
A.|λ$\overrightarrow{a}$|=|λ|$\overrightarrow{a}$B.|λ$\overrightarrow{a}$|=λ|$\overrightarrow{a}$|C.若$\overrightarrow{a}$=$\overrightarrow{0}$,則λ$\overrightarrow{a}$=$\overrightarrow{0}$D.(λ-2)$\overrightarrow{a}$=$λ\overrightarrow{a}$+2$\overrightarrow{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求下列各式中x的值:
(1)x=log${\;}_{\frac{\sqrt{2}}{2}}$4;
(2)x=log9$\sqrt{3}$;
(3)x=7${\;}^{1-lo{g}_{7}5}$;
(4)logx8=-3;
(5)log${\;}_{\frac{1}{2}}$x=4.

查看答案和解析>>

同步練習(xí)冊(cè)答案