| A. | x+y-3=0 | B. | x-y-2013=0 | C. | x-y-2015=0 | D. | x-y+2017=0 |
分析 由f(-x)=f(x),f(x+2)=f(2-x),可令x為x+2,可得f(x)為周期為4的函數(shù),再由x=1處的切線方程為x+y-3=0,可得f(1),f(2015),再通過(guò)求導(dǎo),可得導(dǎo)函數(shù)為奇函數(shù)且為周期函數(shù),即可求得f′(2015),由點(diǎn)斜式方程,即可得到所求切線方程.
解答 解:由f(-x)=f(x),f(x+2)=f(2-x),
即有f(x+4)=f(2-(x+2))=f(-x)=f(x),
則f(x)為周期為4的函數(shù),
若曲線y=f(x)在x=1處的切線方程為x+y-3=0,
則f(1)=2,f′(1)=-1,
即有f(2015)=f(503×4+3)=f(3)=f(1)=2,
對(duì)f(-x)=f(x),兩邊求導(dǎo),可得-f′(-x)=f′(x),
由f(x+4)=f(x),可得f′(x+4)=f′(x),
即有f′(2015)=f′(3)=f′(-1)=1,
則該曲線在x=2015處的切線方程為y-2=x-2015,
即為x-y-2013=0.
故選:B.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線方程,主要考查導(dǎo)數(shù)的幾何意義,同時(shí)考查函數(shù)的奇偶性和周期性的運(yùn)用,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 24 | B. | 12 | C. | 6 | D. | 2$\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | y=$\frac{2|x|}{x}$與y=2 | B. | y=$\frac{{x}^{2}+x}{x+1}$與y=x(x≠-1) | ||
| C. | y=|x-2|與y=x-2(x≥2) | D. | y=|x+1|+|x|與y=2x+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變 | |
| B. | 回歸直線$\hat y=\hat bx+\hat a$必過(guò)點(diǎn)$(\overline x,\overline y)$ | |
| C. | 在一個(gè)2×2列聯(lián)表中,由計(jì)算得隨機(jī)變量K2的觀測(cè)值k=13.079,則可以在犯錯(cuò)誤的概率不超過(guò)0.001的前提下,認(rèn)為這兩個(gè)變量間有關(guān)系 | |
| D. | 設(shè)有一個(gè)線性回歸方程為$\hat y=3-5\hat x$,則變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com