欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.如圖,設(shè)鈍角α的頂點(diǎn)位于坐標(biāo)原點(diǎn)O,始邊與x軸的非負(fù)半軸重合,終邊與單位圓O相交于點(diǎn)P,且點(diǎn)P的坐標(biāo)為(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$).
(1)寫出sinα和cosα的值;
(2)求sin(2α+$\frac{π}{6}$)的值.

分析 (1)直接利用三角函數(shù)的定義,寫出結(jié)果即可.
(2)利用兩角和與差的三角函數(shù),化簡(jiǎn)求解即可.

解答 解:(1)由任意角的三角函數(shù)的定義可知:sinα=$\frac{1}{2}$,cosα=$-\frac{\sqrt{3}}{2}$.
(2)sin(2α+$\frac{π}{6}$)=sin2αcos$\frac{π}{6}$+sin$\frac{π}{6}$cos2α=2×$\frac{1}{2}×(-\frac{\sqrt{3}}{2})×\frac{\sqrt{3}}{2}$+$\frac{1}{2}×(1-2×({\frac{1}{2})}^{2})$=$-\frac{3}{4}+\frac{1}{4}$
=$-\frac{1}{2}$.

點(diǎn)評(píng) 本題考查任意角的三角函數(shù)的定義,兩角和與差的三角函數(shù)以及二倍角公式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知△ABC中,∠ACB=45°,B、C為定點(diǎn)且BC=3,A為動(dòng)點(diǎn),作AD⊥BC于D(異于點(diǎn)B),如圖1所示.連接AB,將△ABD沿AD折起,使平面ABD⊥平面ADC,如圖2所示.
(Ⅰ)求證:AB⊥CD;
(Ⅱ)當(dāng)三棱錐A-BCD的體積取得最大值時(shí),求線段AC的長(zhǎng);
(Ⅲ)在(Ⅱ)的條件下,分別取BC,AC的中點(diǎn)E、M,試在棱CD上確定一點(diǎn)N,使得EN⊥BM,并求此時(shí)EN與平面BMN所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某普通高中為了了解學(xué)生的視力狀況,隨機(jī)抽查了100名高二年級(jí)學(xué)生和100名高三年級(jí)學(xué)生,對(duì)這些學(xué)生配戴眼鏡的度數(shù)(簡(jiǎn)稱:近視度數(shù))進(jìn)行統(tǒng)計(jì),得到高二學(xué)生的頻數(shù)分布表和高三學(xué)生頻率分布直方圖如下:
近視度數(shù)0-100100-200200-300300-400400以上
學(xué)生頻數(shù)304020100
將近視程度由低到高分為4個(gè)等級(jí):當(dāng)近視度數(shù)在0-100時(shí),稱為不近視,記作0;當(dāng)近視度數(shù)在100-200時(shí),稱為輕度近視,記作1;當(dāng)近視度數(shù)在200-400時(shí),稱為中度近視,記作2;當(dāng)近視度數(shù)在400以上時(shí),稱為高度近視,記作3.
(Ⅰ)從該校任選1名高二學(xué)生,估計(jì)該生近視程度未達(dá)到中度及以上的概率;
(Ⅱ)設(shè)a=0.0024,從該校任選1名高三學(xué)生,估計(jì)該生近視程度達(dá)到中度或中度以上的概率;
(Ⅲ)把頻率近似地看成概率,用隨機(jī)變量X,Y分別表示高二、高三年級(jí)學(xué)生的近視程度,若EX=EY,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù):
①sin213°+cos217°-sin 13°cos 17°;
②sin215°+cos215°-sin 15°cos 15°;
③sin218°+cos212°-sin 18°cos 12°;
④sin2(-18°)+cos248°-sin(-18°)cos (-48°);
⑤sin2(-25°)+cos255°-sin(-25°)cos (-55°).
(1)試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù);
(2)根據(jù)(1)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知集合A={x|$\frac{2x-2}{x-2}$<1},集合B={x|x2+4x-5>0},集合C={x||x-m|<1,m∈R},求:
(1)A∩B.
(2)若(A∩B)⊆C,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知等比數(shù)列{an}的首項(xiàng)a1=1,公比q=2,等差數(shù)列{bn}的首項(xiàng)b1=3,公差d=3,在{an}中插入{bn}中的項(xiàng)后從小到大構(gòu)成新數(shù)列{cn},則{cn}的第100項(xiàng)為(  )
A.270B.273C.276D.279

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)f(x)=$\frac{1}{1+x}$,數(shù)列{an}滿足:a1=$\frac{1}{2}$,an+1=f(an),n∈N*
(1)若λ1,λ2為方程f(x)=x的兩個(gè)不相等的實(shí)根,證明:數(shù)列{$\frac{{a}_{n}-{λ}_{1}}{{a}_{n}-{λ}_{2}}$}為等比數(shù)列;
(2)證明:存在實(shí)數(shù)m,使得對(duì)?n∈N*,a2n-1<a2n+1<m<a2n+2<a2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.△ABC的內(nèi)角A、B、C所對(duì)的邊長(zhǎng)分別為a,b,c,且C=2A,tanA=$\frac{\sqrt{7}}{3}$,a+c=5.
(1)求cosA及sinA的值.
(2)求b的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)f(x)=(1+x)6(1-x)5,則導(dǎo)函數(shù)f′(x)中x2的系數(shù)是( 。
A.0B.15C.12D.-15

查看答案和解析>>

同步練習(xí)冊(cè)答案