| A. | $\frac{1}{2}+ln2$ | B. | $\frac{1}{2}+2ln2$ | C. | $\frac{3}{2}+2ln2$ | D. | $\frac{3}{2}+\frac{1}{2}ln2$ |
分析 將兩個函數(shù)作差,得到函數(shù)y=f(x)-g(x),再求此函數(shù)的最小值即可得到|AB|最小值.
解答 解:設(shè)函數(shù)y=f(x)-g(x)=x2-lnx+1,求導(dǎo)數(shù)得
y′=2x-$\frac{1}{x}$=$\frac{2{x}^{2}-1}{x}$,
當(dāng)0<x<$\frac{\sqrt{2}}{2}$時,y′<0,函數(shù)在(0,$\frac{\sqrt{2}}{2}$)上為單調(diào)減函數(shù),
當(dāng)x>時,y′>0,函數(shù)在($\frac{\sqrt{2}}{2}$,+∞)上為單調(diào)增函數(shù),
所以當(dāng)x=$\frac{\sqrt{2}}{2}$時,所設(shè)函數(shù)的最小值為$\frac{3}{2}$+$\frac{1}{2}$ln2,
所以|AB|最小值為$\frac{3}{2}$+$\frac{1}{2}$ln2,
故選:D.
點評 本題主要考查函數(shù)最值的求法,利用導(dǎo)數(shù)研究函數(shù)的極值是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 垂直于同一直線的兩條直線互相平行 | |
| B. | 垂直于同一平面的兩條直線互相平行 | |
| C. | 垂直于同一平面的兩個平面互相平行 | |
| D. | 平行于同一平面的兩條直線互相平行 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{3}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | y=2x+1 | B. | y=2x-1 | C. | y=-2x-3 | D. | y=-2x-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com