欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

16.已知函數(shù)f(x)=$\overrightarrow{m}$.$\overrightarrow{n}$,且$\overrightarrow{m}$=(sinωx+cosωx,$\sqrt{3}$cosωx),$\overrightarrow{n}$=(cosωx-sinωx,2sinωx),其中ω>0,若函數(shù)f(x)相鄰兩對稱軸的距離大于等于$\frac{π}{2}$.
(1)求ω的取值范圍;
(2)在銳角三角形△ABC中,a,b,c分別是角A,B,C的對邊,當ω最大時,f(A)=1,且a=$\sqrt{3}$,求c+b的取值范圍.

分析 (1)根據(jù)二倍角公式和和差角公式(輔助角公式),化簡函數(shù)解析式為正弦型函數(shù)的形式,進而結(jié)合相鄰兩對稱軸的距離大于等于$\frac{π}{2}$.可得f(x)的最小正周期,求出ω的取值范圍;
(2)由正弦定理可得b=2sinB,c=2sinC,再由B,C的關(guān)系,求得B的范圍,結(jié)合兩角和的正弦公式,以及正弦函數(shù)的圖象和性質(zhì),即可得到所求范圍.

解答 解:(1)∵函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$=cos2ωx-sin2ωx+2$\sqrt{3}$sinωxcosωx
=cos2ωx+$\sqrt{3}$sin2ωx=2($\frac{1}{2}$cos2ωx+$\frac{\sqrt{3}}{2}$sin2ωx)=2sin(2ωx+$\frac{π}{6}$),
由題意得$\frac{T}{2}$≥$\frac{π}{2}$,即T≥π,
又∵ω>0,
∴$\frac{2π}{2ω}$≥π,
∴0<ω≤1;
(2)當ω最大時,即有ω=1,f(x)=2sin(2x+$\frac{π}{6}$),
∵f(A)=2sin(2A+$\frac{π}{6}$)=1,∴sin(2A+$\frac{π}{6}$)=$\frac{1}{2}$,
∵0<A<$\frac{π}{2}$,∴2A+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{7π}{6}$),2A+$\frac{π}{6}$=$\frac{5π}{6}$,
∴A=$\frac{π}{3}$,
由正弦定理可得$\frac{a}{sinA}$=$\frac{sinB}$=$\frac{c}{sinC}$=$\frac{\sqrt{3}}{sin\frac{π}{3}}$=2,
則b=2sinB,c=2sinC,
b+c=2sinB+2sinC=2sinB+2sin($\frac{2π}{3}$-B)
=$\sqrt{3}$cosB+3sinB=2$\sqrt{3}$sin(B+$\frac{π}{6}$),
在銳角三角形ABC中,0$<B<\frac{π}{2}$,0<$C<\frac{π}{2}$,
即有0<$\frac{2π}{3}$-B<$\frac{π}{2}$,可得$\frac{π}{6}$<B<$\frac{π}{2}$,
可得$\frac{π}{3}$<B+$\frac{π}{6}$<$\frac{2π}{3}$,
$\frac{\sqrt{3}}{2}$<sin(B+$\frac{π}{6}$)≤1,即有3<2$\sqrt{3}$sin(B+$\frac{π}{6}$)≤2$\sqrt{3}$,
則b+c的取值范圍是(3,2$\sqrt{3}$].

點評 本題考查的知識點是三角函數(shù)中的恒等變換應(yīng)用,平面向量數(shù)量積的運算,正弦定理和余弦定理,是三角函數(shù)與向量的綜合應(yīng)用,難度中檔.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

6.設(shè)變量x,y滿足約束條件:$\left\{\begin{array}{l}x+y≥3\\ x-y≥-1\\ 2x-y≤3\end{array}\right.$,則目標函數(shù)z=x2+y2的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若執(zhí)行如圖所示的程序框圖,則輸出的i的值為(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$(a>0,b>0)的兩條漸近線與拋物線y2=2px(p>0)的準線分別交于A,B兩點,O為坐標原點.若雙曲線的離心率為2,△ABO的面積為$\sqrt{3}$,則p的值為( 。
A.$\sqrt{6}$B.$2\sqrt{3}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.復數(shù)$\frac{3+2i}{1-i}$=( 。
A.$\frac{1}{2}+\frac{5}{2}i$B.$\frac{1}{2}-\frac{5}{2}i$C.$-\frac{1}{2}+\frac{5}{2}i$D.$-\frac{1}{2}-\frac{5}{2}i$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設(shè)實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y-1≥0}\\{x-1≤0}\\{x-y+1≥0}\end{array}\right.$,若z=-2x+y,則z的最小值是-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.正△ABC的邊長為1,用斜二側(cè)畫法畫出它的直觀圖的面積是$\frac{\sqrt{6}}{16}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.某個長方體被一個平面所截,得到的幾何體的三視圖如圖所示,則這個幾何體的全面積為20+2$\sqrt{6}$(平方單位).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.某校舉辦數(shù)學科優(yōu)質(zhì)課比賽,共有6名教師參加.如果第一場比賽教師只能從甲、乙、丙三人中產(chǎn)生,最后一場只能從甲、乙兩人中產(chǎn)生,則不同的安排方案共有96 種.(用數(shù)字作答)

查看答案和解析>>

同步練習冊答案