分析 (1)設P(x,y),M(x0,y0),運用向量共線的坐標表示和點滿足橢圓方程,可得所求軌跡方程;
(2)運用向量的數(shù)量積的坐標表示和直線與圓有公共點的條件:d≤r,解不等式即可得到所求范圍.
解答 解:(1)設P(x,y),M(x0,y0),∵$\overrightarrow{PN}$=2$\overrightarrow{MN}$,
∴x0=x,y0=$\frac{y}{2}$,
∵點M在橢圓$\frac{{x}^{2}}{4}$+y2=1上,∴$\frac{{{x}_{0}}^{2}}{4}$+y02=1,
即$\frac{{x}^{2}}{4}$+($\frac{y}{2}$)2=1,整理得x2+y2=4.
∴曲線C的方程為x2+y2=4;
(2)∵橢圓的右焦點F($\sqrt{3}$,0),上頂點A(0,1),
∴$\overrightarrow{AP}$$•\overrightarrow{FP}$=(x-$\sqrt{3}$,y)•(x,y-1)=(x-$\sqrt{3}$)x+y(y-1)=x2+y2-$\sqrt{3}$x-y=4-$\sqrt{3}$x-y,
設t=$\sqrt{3}$x+y,即$\sqrt{3}$x+y-t=0,
∵d=$\frac{|t|}{\sqrt{3+1}}$≤2,
∴-4≤t≤4,
∴0≤$\overrightarrow{AP}$$•\overrightarrow{FP}$≤8,
∴$\overrightarrow{AP}$$•\overrightarrow{FP}$的取值范圍為[0,8].
點評 本題考查軌跡方程的求法,注意向量共線的坐標表示和點滿足橢圓方程,考查向量的數(shù)量積的坐標表示和直線和圓相交的條件,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 若m∥α,n∥α,則m∥n | B. | 若m∥α,m∥β,則α∥β | ||
| C. | 若m∥α,n∥β,m∥n,則α∥β | D. | 若α∥β,α∩γ=m,β∩γ=n,則m∥n |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\overrightarrow{CD}=\overrightarrow{CA}+\overrightarrow{DB}$ | B. | $\overrightarrow{CD}=\frac{1}{2}\overrightarrow{AB}-\overrightarrow{AC}$ | C. | $\overrightarrow{CD}=\overrightarrow{BC}-\overrightarrow{DA}$ | D. | $\overrightarrow{CD}=\frac{1}{2}\overrightarrow{CA}+\frac{1}{2}\overrightarrow{CB}$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com