【題目】如圖所示,在多面體
中,矩形
所在平面與直角梯形
所在平面垂直,
,
,
為
的中點(diǎn),且
,
.
![]()
(1)求證:
平面
;
(2)求直線
與平面
所成角的正弦值.
【答案】(1)詳見(jiàn)解析;(2)
.
【解析】
(1)要證
平面
,即證
,構(gòu)造四邊形
,證明其為平行四邊形即可;
(2) 以
為原點(diǎn),分別以
、
、
為
,
,
軸,建立空間直角坐標(biāo)系
,利用空間向量法即可求出直線
與平面
所成角的正弦值.
(1)證明:如圖,
![]()
取
的中點(diǎn)
,連結(jié)
.
∵
是
的中點(diǎn),
是
的中點(diǎn).
∴
,
.
又
,
.∴
,
.
∴四邊形
是平行四邊形,∴
.
又∵
平面
,
平面
.
∴
平面
.
(2)∵平面
平面
,
,平面
平面
,
∴
平面
.∴
,
.
∵
,
,∴
.
如圖,以
為原點(diǎn),分別以
、
、
為
,
,
軸,建立空間直角坐標(biāo)系
,
則
,
,
,
,
,
,
,
∴
,
.
設(shè)平面
的一個(gè)法向量為
,
則
,令
,得
,
,∴
.
又
,∴
.
∴直線
與平面
所成角的正弦值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)
.
(1)求
的值域;
(2)若存在唯一的整數(shù)
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在
軸上,離心率為
,且過(guò)點(diǎn)P
。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知斜率為1的直線l過(guò)橢圓的右焦點(diǎn)F交橢圓于A.B兩點(diǎn),求弦AB的長(zhǎng)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知菱形
與直角梯形
所在的平面互相垂直,其中
,
,
,
,
為
的中點(diǎn)
(Ⅰ)求證:
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)設(shè)
為線段
上一點(diǎn),
,若直線
與平面
所成角的正弦值為
,求
的長(zhǎng).
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的左焦點(diǎn)在拋物線
的準(zhǔn)線上,且橢圓的短軸長(zhǎng)為2,
分別為橢圓的左,右焦點(diǎn),
分別為橢圓的左,右頂點(diǎn),設(shè)點(diǎn)
在第一象限,且
軸,連接
交橢圓于點(diǎn)
,直線
的斜率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若三角形
的面積等于四邊形
的面積,求
的值;
(Ⅲ)設(shè)點(diǎn)
為
的中點(diǎn),射線
(
為原點(diǎn))與橢圓交于點(diǎn)
,滿足
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在原點(diǎn)的雙曲線
的右焦點(diǎn)為
,右頂點(diǎn)為
.
(1)求雙曲線
的方程;
(2)若直線
與雙曲線
恒有兩個(gè)不同的交點(diǎn)
和
,且
(其中
為坐標(biāo)原點(diǎn)),求實(shí)數(shù)
取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體
中,
為等邊三角形,
,
點(diǎn)
為邊
的中點(diǎn).
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求證:平面
平面
;
(Ⅲ)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)![]()
(1)若
,求函數(shù)
的單調(diào)區(qū)間;
(2)若關(guān)于
的不等式
在
上恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C過(guò)點(diǎn)
,兩個(gè)焦點(diǎn)
.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l交橢圓C于A,B兩點(diǎn),且|AB|=6,求△AOB面積的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com