分析 已知等式利用正弦定理化簡(jiǎn),得到關(guān)系式,利用余弦定理表示出cosC,把得出關(guān)系式整理后代入,利用基本不等式求出cosC的最小值即可.
解答 解:∵2c=a+3$\sqrt{2}$,
∴兩邊平方得:4c2=a2+18+6$\sqrt{2}$a,
∴cosC=$\frac{{a}^{2}+9-{c}^{2}}{6a}$=$\frac{1}{8}$(a+$\frac{6}{a}$)-$\frac{\sqrt{2}}{4}$≥$\frac{\sqrt{6}-\sqrt{2}}{4}$(當(dāng)且僅當(dāng)a=$\sqrt{6}$時(shí)取等號(hào)),
則cosC的最小值為$\frac{\sqrt{6}-\sqrt{2}}{4}$.
故答案為:$\frac{\sqrt{6}-\sqrt{2}}{4}$.
點(diǎn)評(píng) 此題考查了余弦定理,以及基本不等式的運(yùn)用,熟練掌握定理是解本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (-1,0)∪(0,+∞) | B. | [-3,+∞) | C. | [-3,-1)∪(-1,+∞) | D. | (-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (0,2) | B. | (-∞,2) | C. | (-∞,2] | D. | [0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2x-$\frac{3}{2}$ | B. | -2x-$\frac{3}{2}$ | C. | 2x+$\frac{3}{2}$ | D. | -2x+$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -$\frac{2m}{3}$ | B. | $\frac{2m}{3}$ | C. | -$\frac{3m}{2}$ | D. | $\frac{3m}{2}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com