【題目】已知:函數(shù)
(其中常數(shù)
).
(Ⅰ)求函數(shù)
的定義域及單調(diào)區(qū)間;
(Ⅱ)若存在實(shí)數(shù)
,使得不等式
成立,求a的取值范圍
【答案】(1)
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
,![]()
(2)![]()
【解析】
(1)函數(shù)
的定義域?yàn)?/span>
………………………………………………1分
……………………………………………3分
由
,解得
,由
,解得
且![]()
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
和
………5分
(2)由題意可知,當(dāng)且僅當(dāng)
,且
在
上的最小值小于或等于
時,存在實(shí)數(shù)
,使得不等式
成立 …………………………………6分
若
即
時
|
|
|
|
|
| 0 | + |
| 單減 | 極小值 | 單增 |
在
上的最小值為
,則
,得
………9分
若
,即
時,
在
上單調(diào)遞減,則
在
上的最小值為
,由
,得
(舍) ………………………………………11分
綜上所述,
……………………………………………………………………12分
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的左、右焦點(diǎn)分別為
,
,過
且垂直于
軸的焦點(diǎn)弦的弦長為
,過
的直線
交橢圓
于
,
兩點(diǎn),且
的周長為
.
(1)求橢圓
的方程;
(2)已知直線
,
互相垂直,直線
過
且與橢圓
交于點(diǎn)
,
兩點(diǎn),直線
過
且與橢圓
交于
,
兩點(diǎn).求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省的一個氣象站觀測點(diǎn)在連續(xù)4天里記錄的AQI指數(shù)M與當(dāng)天的空氣水平可見度
(單位:cm)的情況如表1:
| 900 | 700 | 300 | 100 |
| 0.5 | 3.5 | 6.5 | 9.5 |
該省某市2017年11月份AQI指數(shù)頻數(shù)分布如表2:
|
|
|
|
|
|
頻數(shù)(天) | 3 | 6 | 12 | 6 | 3 |
<>(1)設(shè)
(2)小李在該市開了一家洗車店,洗車店每天的平均收入與AQI指數(shù)存在相關(guān)關(guān)系如表3:
|
|
|
|
|
|
日均收入(元) | -2000 | -1000 | 2000 | 6000 | 8000 |
根據(jù)表3估計小李的洗車店2017年11月份每天的平均收入.
附參考公式:
,其中
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求直線
的普通方程與曲線
的直角坐標(biāo)方程;
(2)若直線
與曲線
交于
兩點(diǎn),且設(shè)定點(diǎn)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等腰直角三角形
中,
,點(diǎn)
是邊
上異于
的一點(diǎn),光線從點(diǎn)
出發(fā),經(jīng)
反射后又回到原點(diǎn)
,光線
經(jīng)過
的重心.
![]()
(1)建立適當(dāng)?shù)淖鴺?biāo)系,請求
的重心
的坐標(biāo);
(2)求點(diǎn)
的坐標(biāo);
(3)求
的周長及面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)某校夏令營有3名男同學(xué)A、B、C和3名女同學(xué)X、Y、Z,其年級情況如下表:
一年級 | 二年級 | 三年級 | |
男同學(xué) | A | B | C |
女同學(xué) | X | Y | Z |
現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加知識競賽(每人被選到的可能性相同).
①用表中字母列舉出所有可能的結(jié)果;
②設(shè)M為事件“選出的2人來自不同年級且恰有1名男同學(xué)和1名女同學(xué)”,求事件M發(fā)生的概率.
(2)節(jié)日前夕,小李在家門前的樹上掛了兩串彩燈.這兩串彩燈的第一次閃亮相互獨(dú)立,且都在通電后的4秒內(nèi)任一時刻等可能發(fā)生,然后每串彩燈以4秒為間隔閃亮.那么這兩串彩燈同時通電后,它們第一次閃亮的時刻相差不超過2秒的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某地區(qū)鄉(xiāng)居民人民幣儲蓄存款(年底余額)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
時間代號x | 1 | 2 | 3 | 4 | 5 | 6 |
儲蓄存款y(千億元) | 3.5 | 5 | 6 | 7 | 8 | 9.5 |
(1)求關(guān)于x的回歸方程
,并預(yù)測該地區(qū)2019年的人民幣儲蓄存款(用最簡分?jǐn)?shù)作答).
(2)在含有一個解釋變量的線性模型中,
恰好等于相關(guān)系數(shù)r的平方,當(dāng)
時,認(rèn)為線性冋歸模型是有效的,請計算
并且評價模型的擬合效果(計算結(jié)果精確到0.001).
附:
,
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com