分析 由△AF1F2是等腰直角三角形,可得b=c,可設(shè)橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{2^{2}}+\frac{{y}^{2}}{^{2}}$=1(b>0).在Rt△ABF1中,由勾股定理可得:$|A{F}_{1}{|}^{2}$+|AB|2=$|{F}_{2}B{|}^{2}$,|AF2|=|AF1|=$\sqrt{2}$b,設(shè)|BF2|=m,則|BF1|=2a-m=2$\sqrt{2}$b-m,2b2+$(\sqrt{2}b+m)^{2}$=$(2\sqrt{2}b-m)^{2}$,又$\frac{1}{2}|A{F}_{1}||AB|$=$\frac{1}{2}×\sqrt{2}b$×$(\sqrt{2}b+m)$=6,聯(lián)立解出即可得出.
解答 解:∵△AF1F2是等腰直角三角形,
∴b=c,
可設(shè)橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{2^{2}}+\frac{{y}^{2}}{^{2}}$=1(b>0).
在Rt△ABF1中,由勾股定理可得:$|A{F}_{1}{|}^{2}$+|AB|2=$|{F}_{2}B{|}^{2}$,
|AF2|=|AF1|=$\sqrt{2}$b,設(shè)|BF2|=m,則|BF1|=2a-m=2$\sqrt{2}$b-m,
代入可得:2b2+$(\sqrt{2}b+m)^{2}$=$(2\sqrt{2}b-m)^{2}$,
又$\frac{1}{2}|A{F}_{1}||AB|$=$\frac{1}{2}×\sqrt{2}b$×$(\sqrt{2}b+m)$=6,
聯(lián)立解得b2=$\frac{9}{2}$,
∴橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{9}+\frac{2{y}^{2}}{9}$=1.
故答案為:$\frac{{x}^{2}}{9}+\frac{2{y}^{2}}{9}$=1.
點(diǎn)評(píng) 本題考查了橢圓的定義標(biāo)準(zhǔn)方程及其性質(zhì)、勾股定理、三角形的面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | v=3cost-3tsint+1 | B. | v=3cost-3tsint | ||
| C. | v=-3sint | D. | v=3cost+3tsint |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -$\sqrt{3}$-i | B. | -$\sqrt{3}$+i | C. | 1+$\sqrt{3}$i | D. | 1-$\sqrt{3}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com