欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

2.(B組題)已知⊙O的方程為x2+y2=8,點(diǎn)P是圓O上的一個動點(diǎn),若線段OP的垂直平分線總不經(jīng)過x=±a與y=±a(其中a為正常數(shù))所圍成的封閉圖形內(nèi)部的任意一個點(diǎn),則實(shí)數(shù)a的最大值為1.

分析 根據(jù)題意畫出圖形,結(jié)合圖形得出OP的垂直平分線形成的區(qū)域,
以及x=±a和y=±a表示的區(qū)域,再根據(jù)題意求出a的最大值.

解答 解:如圖所示,
隨著點(diǎn)P在圓O上運(yùn)動,
OP的垂直平分線形成的區(qū)域是圓:x2+y2=2的外部,
也在區(qū)域x=±a和y=±a表示正方形EFGH的外部,
若OP的垂直平分線總是不經(jīng)過x=±a與y=±a(其中a為正常數(shù))
所圍成的封閉圖形內(nèi)部的任意一個點(diǎn),
則a≤1,即a的最大值是1.
故答案為:1.

點(diǎn)評 本題主要考查二元一次方程與平面區(qū)域、圓的方程與垂直平分線的應(yīng)用問題,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.等比數(shù)列{an}中,a2=1,a4=2,則a6=(  )
A.$2\sqrt{2}$B.4C.$4\sqrt{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某醫(yī)療科研項目對5只實(shí)驗小白鼠體內(nèi)的A、B兩項指標(biāo)數(shù)據(jù)進(jìn)行收集和分析,得到的數(shù)據(jù)如下表:
指標(biāo)1號小白鼠2號小白鼠3號小白鼠4號小白鼠5號小白鼠
A57698
B22344
(1)若通過數(shù)據(jù)分析,得知A項指標(biāo)數(shù)據(jù)與B項指標(biāo)數(shù)據(jù)具有線性相關(guān)關(guān)系,試根據(jù)上表,求B項指標(biāo)數(shù)據(jù)y關(guān)于A項指標(biāo)數(shù)據(jù)x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)現(xiàn)要從這5只小白鼠中隨機(jī)抽取3只,求其中至少有一只B項指標(biāo)數(shù)據(jù)高于3的概率.
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某幾何體的三視圖如圖所示,則其表面積為(  )
A.18B.22C.21D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)$y=2tan(2x-\frac{π}{4})-1$在一個周期內(nèi)的圖象是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.過點(diǎn)O(1,0)作函數(shù)f(x)=ex的切線,則切線方程為( 。
A.y=e2(x-1)B.y=e(x-1)C.y=e2(x-1)或y=e(x-1)D.y=x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項和為Sn,且滿足Sn=2an-n,求數(shù)列{an}的通項公式.勤于思考的小紅設(shè)計了下面兩種解題思路,請你選擇其中一種并將其補(bǔ)充完整.
思路1:先設(shè)n的值為1,根據(jù)已知條件,計算出a1=1,a2=3,a3=7.
猜想:an=2n-1
然后用數(shù)學(xué)歸納法證明.證明過程如下:
①當(dāng)n=1時,a1=21-1,猜想成立
②假設(shè)n=k(k∈N*)時,猜想成立,即ak=2k-1.
那么,當(dāng)n=k+1時,由已知Sn=2an-n,得Sk+1=2ak+1-(k+1).
又Sk=2ak-k,兩式相減并化簡,得ak+1=2k+1-1(用含k的代數(shù)式表示).
所以,當(dāng)n=k+1時,猜想也成立.
根據(jù)①和②,可知猜想對任何k∈N*都成立.
思路2:先設(shè)n的值為1,根據(jù)已知條件,計算出a1=1.
由已知Sn=2an-n,寫出Sn+1與an+1的關(guān)系式:Sn+1=2an+1-(n+1),
兩式相減,得an+1與an的遞推關(guān)系式:an+1=2an+1.
整理:an+1+1=2(an+1).
發(fā)現(xiàn):數(shù)列{an+1}是首項為2,公比為2的等比數(shù)列.
得出:數(shù)列{an+1}的通項公式an+1=2n,進(jìn)而得到an=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.i是虛數(shù)單位,復(fù)數(shù)$\frac{1+3i}{1-i}$=-1+2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合$A=\{x∈Z|\frac{x+1}{x-2}≤0\}$,則集合A的子集的個數(shù)為( 。
A.7B.8C.15D.16

查看答案和解析>>

同步練習(xí)冊答案