| A. | 3 | B. | 4 | C. | 5 | D. | 3或5 |
分析 由sinB=sin2A=2sinAcosA,由正弦定理$\frac{a}{snA}=\frac{sinB}$,可知b=2acosA,再由余弦定理可得到關(guān)于c的一元二次方程,解得c的值.
解答 解:在△ABC中,由已知條件可知:sinB=sin2A=2sinAcosA;
由正弦定理$\frac{a}{sinA}=\frac{sinB}$,b=$\frac{asinB}{sinA}$,
∴b=2acosA
cosA=$\frac{\sqrt{6}}{3}$
余弦定理$cosA=\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$
整理可知:c2-8c+15=0
解得c1=3或c2=5
當(dāng)c=3時(shí),a=c=3時(shí),
則A=C,又B=2A,A+B+C=180°,
得A=C=45°,B=90°,
則三角形ABC為等腰直角三角形,b=3$\sqrt{2}$與b=2$\sqrt{6}$矛盾,
故c=5,
故選C.
點(diǎn)評(píng) 本題主要考察正弦定理和余弦定理,最后要驗(yàn)證是否滿(mǎn)足三角形.屬于中檔題
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 充分不必要條件 | B. | 必要不充分條件 | ||
| C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $[{-\frac{π}{4},\frac{π}{4}}]$ | B. | $[{-\frac{π}{2},0}]$ | C. | $[{0,\frac{π}{2}}]$ | D. | $[{\frac{π}{4},\frac{3π}{4}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -$\frac{1}{2}$ | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $[\frac{π}{8},\frac{5π}{8}]$ | B. | $[-\frac{7π}{8},-\frac{3π}{8}]$ | C. | $[\frac{9π}{4},\frac{21π}{8}]$ | D. | $[\frac{9π}{8},\frac{33π}{8}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com