欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

13.對(duì)于定義在D上的函數(shù)y=f(x),若同時(shí)滿足
①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c(c是常數(shù));
②對(duì)于D內(nèi)任意x2,當(dāng)x2∉[a,b]時(shí)總有f(x2)>c,則稱f(x)為“平底型”函數(shù).
判斷f1(x)=|2x-1|+|2x-2|,f2(x)=|2x-1|-|2x-2|是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由.

分析 考查函數(shù)是否全部具備“平底型”函數(shù)的定義中的2個(gè)條件:①在一個(gè)閉區(qū)間上,函數(shù)值是個(gè)常數(shù);②在閉區(qū)間外的定義域內(nèi),函數(shù)值大于此常數(shù).

解答 解:①f1(x)=|2x-1|+|2x-2|是“平底型”函數(shù),
∵存在區(qū)間[0,1]使得f1(x)=1,在區(qū)間[0,1]外,f1(x)>1,
∴f1(x)=|2x-1|+|2x-2|是“平底型”函數(shù).
②f2(x)=|2x-1|-|2x-2|不是“平底型”函數(shù),
∵在(-∞,0]上,f2(x)=-1,在(-∞,0]外,f2(x)>-1,(-∞,0]不是閉區(qū)間.
∴f2(x)=|2x-1|-|2x-2|不是“平底型”函數(shù).

點(diǎn)評(píng) 本題綜合考查函數(shù)概念及構(gòu)成要素,及不等式中的恒成立問(wèn)題,體現(xiàn)等價(jià)轉(zhuǎn)化和分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.寫(xiě)出數(shù)列-$\frac{1}{2×1}$,$\frac{1}{2×2}$,-$\frac{1}{2×3}$,$\frac{1}{2×4}$的一個(gè)通項(xiàng)公式an=(-1)n•$\frac{1}{2n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)集合M={x|2x2-x-6<0},N={x|0<x≤4},則M∩N等于( 。
A.(0,2)B.(-$\frac{3}{2}$,0)C.(-2,3)D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.解關(guān)于x的不等式a${\;}^{2{x}^{2}-3x+2}$>a${\;}^{2{x}^{2}+2x-3}$.(a>0且a≠1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知-4<x<1,求y=$\frac{{x}^{2}-2x+2}{2(x-1)}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.分別畫(huà)出下列函數(shù)的圖象:
(1)y=|lgx|;
(2)y=2x+2;
(3)y=|x-2|(x+1);
(4)y=$\frac{x+2}{x+3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.作出函數(shù)y=$\left\{\begin{array}{l}{{x}^{2}-6x+7,(2<x≤5)}\\{-2x-2,(-4<x≤2)}\end{array}\right.$的圖象,并求出其定義域和值域,寫(xiě)出其單調(diào)增區(qū)間和單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{a{x}^{2}+1}{bx}$(a,b∈N+),又f(2)<3,f(1)=2.
(1)求f(x)的解析式;
(2)當(dāng)x∈[$\frac{1}{6}$,$\frac{1}{2}$]時(shí),不等式f(x)-mx+1≥0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.化簡(jiǎn):$\frac{4{a}^{\frac{2}{3}}}{^{\frac{1}{3}}}$÷$\frac{-2}{3{a}^{\frac{1}{3}}^{\frac{4}{3}}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案