欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

6.如圖,橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率是$\frac{{\sqrt{2}}}{2}$,點(diǎn)P(0,1)在短軸CD上,且$\overrightarrow{PC}$•$\overrightarrow{PD}$=-1
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),過點(diǎn)P的動直線與橢圓交于A、B兩點(diǎn).是否存在常數(shù)λ,使得$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$為定值?若存在,求λ的值;若不存在,請說明理由.

分析 (Ⅰ)通過e=$\frac{{\sqrt{2}}}{2}$、$\overrightarrow{PC}$•$\overrightarrow{PD}$=-1,計(jì)算即得a=2、b=$\sqrt{2}$,進(jìn)而可得結(jié)論;
(Ⅱ)分情況對直線AB斜率的存在性進(jìn)行討論:①當(dāng)直線AB的斜率存在時,聯(lián)立直線AB與橢圓方程,利用韋達(dá)定理計(jì)算可得當(dāng)λ=1時$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$=-3;②當(dāng)直線AB的斜率不存在時,$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$=-3.

解答 解:(Ⅰ)根據(jù)題意,可得C(0,-b),D(0,b),
又∵P(0,1),且$\overrightarrow{PC}$•$\overrightarrow{PD}$=-1,
∴$\left\{\begin{array}{l}{1-^{2}=-1}\\{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{{a}^{2}-^{2}={c}^{2}}\end{array}\right.$,解得a=2,b=$\sqrt{2}$,
∴橢圓E的方程為:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1;
(Ⅱ)結(jié)論:存在常數(shù)λ=1,使得$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$為定值-3.
理由如下:
對直線AB斜率的存在性進(jìn)行討論:
①當(dāng)直線AB的斜率存在時,設(shè)直線AB的方程為y=kx+1,
A(x1,y1),B(x2,y2),
聯(lián)立$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\\{y=kx+1}\end{array}\right.$,消去y并整理得:(1+2k2)x2+4kx-2=0,
∵△=(4k)2+8(1+2k2)>0,
∴x1+x2=-$\frac{4k}{1+2{k}^{2}}$,x1x2=-$\frac{2}{1+2{k}^{2}}$,
從而$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$=x1x2+y1y2+λ[x1x2+(y1-1)(y2-1)]
=(1+λ)(1+k2)x1x2+k(x1+x2)+1
=$\frac{(-2λ-4){k}^{2}+(-2λ-1)}{1+2{k}^{2}}$
=-$\frac{λ-1}{1+2{k}^{2}}$-λ-2.
∴當(dāng)λ=1時,-$\frac{λ-1}{1+2{k}^{2}}$-λ-2=-3,
此時$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$=-3為定值;
②當(dāng)直線AB的斜率不存在時,直線AB即為直線CD,
此時$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\overrightarrow{OC}•\overrightarrow{OD}$+$\overrightarrow{PC}•\overrightarrow{PD}$=-2-1=-3;
故存在常數(shù)λ=1,使得$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$為定值-3.

點(diǎn)評 本題考查橢圓的標(biāo)準(zhǔn)方程、直線方程等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化、特殊與一般、分類與整合等數(shù)學(xué)思想,注意解題方法的積累,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)函數(shù)f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數(shù)x0使得f(x0)<0,則a的取值范圍是( 。
A.[$-\frac{3}{2e},1$)B.[$-\frac{3}{2e},\frac{3}{4}$)C.[$\frac{3}{2e},\frac{3}{4}$)D.[$\frac{3}{2e},1$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=log2(x2+2x-3)的定義域是( 。
A.[-3,1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如題圖,橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,且過F2的直線交橢圓于P,Q兩點(diǎn),且PQ⊥PF1
(Ⅰ)若|PF1|=2+$\sqrt{2}$,|PF2|=2-$\sqrt{2}$,求橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)若|PQ|=λ|PF1|,且$\frac{3}{4}$≤λ<$\frac{4}{3}$,試確定橢圓離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知sinα+2cosα=0,則2sinαcosα-cos2α的值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,某港口一天6時到18時的水渠變化曲線近似滿足函數(shù)y=3sin($\frac{π}{6}$x+φ)+k.據(jù)此函數(shù)可知,這段時間水深(單位:m)的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)fn(x)=x+x2+…+xn-1,x≥0,n∈N,n≥2.
(Ⅰ)求fn′(2);
(Ⅱ)證明:fn(x)在(0,$\frac{2}{3}$)內(nèi)有且僅有一個零點(diǎn)(記為an),且0<an-$\frac{1}{2}$<$\frac{1}{3}$($\frac{2}{3}$)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.全網(wǎng)傳播的融合指數(shù)是衡量電視媒體在中國網(wǎng)民中影響力的綜合指標(biāo),根據(jù)相關(guān)報道提供的全網(wǎng)傳播2015年某全國性大型活動的“省級衛(wèi)視新聞臺”融合指數(shù)的數(shù)據(jù),對名列前20名的“省級衛(wèi)視新聞臺”的融合指數(shù)進(jìn)行分組統(tǒng)計(jì),結(jié)果如表所示:
組號分組頻數(shù)
1[4,5)2
2[5,6)8
3[6,7)7
4[7,8]3
(1)現(xiàn)從融合指數(shù)在[4,5)和[7,8]內(nèi)的“省級衛(wèi)視新聞臺”中隨機(jī)抽取2家進(jìn)行調(diào)研,求至少有1家的融合指數(shù)在[7,8]內(nèi)的概率;
(2)根據(jù)分組統(tǒng)計(jì)表求這20家“省級衛(wèi)視新聞臺”的融合指數(shù)的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},則集合A∩∁UB=( 。
A.{3}B.{2,5}C.{1,4,6}D.{2,3,5}

查看答案和解析>>

同步練習(xí)冊答案