【題目】如圖,在三棱柱ABC﹣A1B1C1中,E,F分別為A1C1和BC的中點,M,N分別為A1B和A1C的中點.求證:
![]()
(1)MN∥平面ABC;
(2)EF∥平面AA1B1B.
【答案】(1)證明見解析;(2)證明見解析;
【解析】
(1)推導(dǎo)出MN∥BC,由此能證明MN∥平面ABC.
(2)取A1B1的中點D,連接DE,BD.推導(dǎo)出四邊形DEFB是平行四邊形,從而EF∥BD,由此能證明EF∥平面AA1B1B.
證明:(1)∵M、N分別是A1B和A1C中點.
∴MN∥BC,
又BC平面ABC,MN平面ABC,
∴MN∥平面ABC.
(2)如圖,取A1B1的中點D,連接DE,BD.
![]()
∵D為A1B1中點,E為A1C1中點,
∴DE∥B1C1且
,
在三棱柱ABC﹣A1B1C1中,側(cè)面BCC1B1是平行四邊形,
∴BC∥B1C1且BC=B1C1,∵F是BC的中點,∴BF∥B1C1且
,
∴DE∥BF且DE=BF,∴四邊形DEFB是平行四邊形,∴EF∥BD,
又BD平面AA1B1B,EF平面AA1B1B,
∴EF∥平面AA1B1B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:①函數(shù)
;
②向量
,
,且ω>0,
;
③函數(shù)
的圖象經(jīng)過點![]()
請在上述三個條件中任選一個,補充在下面問題中,并解答.
已知 ,且函數(shù)f(x)的圖象相鄰兩條對稱軸之間的距離為
.
(1)若
,且
,求f(θ)的值;
(2)求函數(shù)f(x)在[0,2π]上的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電動車售后服務(wù)調(diào)研小組從汽車市場上隨機抽取20輛純電動汽車調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計結(jié)果分成5組:
,繪制成如圖所示的頻率分布直方圖.
![]()
(1)求續(xù)駛里程在
的車輛數(shù);
(2)求續(xù)駛里程的平均數(shù);
(3)若從續(xù)駛里程在
的車輛中隨機抽取2輛車,求其中恰有一輛車的續(xù)駛里程在
內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
請用空間向量求解
已知正四棱柱
中,
,
,
分別是棱
,
上的點,且滿足
,
.
![]()
求異面直線
,
所成角的余弦值;
求面
與面
所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點
是拋物線
上的一點,過點
作兩條直線
與
,分別與拋物線相交于異于點
的
兩點.
![]()
若直線
過點
且
的重心
在
軸上,求直線
的斜率;
若直線
的斜率為1且
的垂心
在
軸上,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
,
,求函數(shù)
圖像上任意一點處切線斜率
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若函數(shù)
為偶函數(shù),求實數(shù)
的值;
(2)若
,求函數(shù)
的單調(diào)遞減區(qū)間;
(3)當(dāng)
時,若對任意的
,不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是各項均為正數(shù)的等比數(shù)列,
.
(1)求
的通項公式;
(2)設(shè)
,求數(shù)列
的前n項和.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com