欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

20.已知函數(shù)f(x)=2cos(ωx+$\frac{π}{6}$)(其中0<ω<$\frac{1}{2}$,x∈R),且有f(5π)=-$\sqrt{3}$;
(1)求f(x)的最小正周期;
(2)設(shè)α,β∈[0,$\frac{π}{2}$],f(5α+$\frac{5}{3}$π)=-$\frac{6}{5}$,f(5β-$\frac{5}{6}$π)=$\frac{16}{17}$,求cos(α+β)的值.

分析 (1)由條件求得cos(5πω+$\frac{π}{6}$)=-$\frac{\sqrt{3}}{2}$,結(jié)合0<ω<$\frac{1}{2}$,求得ω的值.
(2)由條件利用同角三角函數(shù)的基本關(guān)系求得sinα和cosα的值、cosβ 和sinβ的值,再利用兩角和的余弦公式求得cos(α+β)的值.

解答 解:(1)對(duì)于函數(shù)f(x)=2cos(ωx+$\frac{π}{6}$),由f(5π)=2cos(5πω+$\frac{π}{6}$)=-$\sqrt{3}$,且0<ω<$\frac{1}{2}$,
可得cos(5πω+$\frac{π}{6}$)=-$\frac{\sqrt{3}}{2}$,且0<ω<$\frac{1}{2}$,∴ω=$\frac{1}{5}$.
故函數(shù)f(x)的最小正周期為$\frac{2π}{ω}$=10π.
(2)∵α,β∈[0,$\frac{π}{2}$],
f(5α+$\frac{5}{3}$π)=2cos[$\frac{1}{5}$(5α+$\frac{5π}{3}$)+$\frac{π}{6}$]=2cos(α+$\frac{π}{2}$)=-2sinα=-$\frac{6}{5}$,
∴sinα=$\frac{3}{5}$,∴cosα=$\frac{4}{5}$.
又∵f(5β-$\frac{5}{6}$π)=2cos[$\frac{1}{5}$(5β-$\frac{5π}{6}$)+$\frac{π}{6}$]=2cosβ=$\frac{16}{17}$,
∴cosβ=$\frac{8}{17}$,∴sinβ=$\frac{15}{17}$.
故cos(α+β)=cosαcosβ-sinαsinβ=$\frac{4}{5}×\frac{8}{17}$-$\frac{3}{5}×\frac{15}{17}$=-$\frac{13}{85}$.

點(diǎn)評(píng) 本題主要考查三角函數(shù)的周期性及其求法,兩角和的余弦公式,同角三角函數(shù)的基本關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.給出下列四個(gè)命題(  )
①命題ρ:?x∈R,sinx≤1,則¬p:?x∈R,sinx<1.
②當(dāng)a≥1時(shí),不等式|x-4|+|x-3|<a的解集為非空.
③當(dāng)x>1時(shí),有l(wèi)nx+$\frac{1}{lnx}≥2$.
④設(shè)復(fù)數(shù)z滿足(1-i)z=2i,則z=1-i
其中真命題的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.sin(-$\frac{7π}{3}$)的值是$-\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若$\frac{{S}_{n}}{{S}_{2n}}$為常數(shù),則稱數(shù)列{an}為和諧數(shù)列,若一個(gè)首項(xiàng)為1,公差為d(d≠0)的等差數(shù)列為和諧數(shù)列,則該等差數(shù)列的公差d=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知實(shí)數(shù)a,b,c滿足不等式0<a<b<c<1,且M=2a,N=5-b,P=lnc,則M、N、P的大小關(guān)系為(  )
A.P<N<MB.P<M<NC.M<P<ND.N<P<M

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖所示,已知直線l:y=kx-1(k>0)與拋物線C:x2=4y交與M,N兩點(diǎn),F(xiàn)為拋物線C的焦點(diǎn),若|MF|=2|NF|,則實(shí)數(shù)k的值為( 。
A.$\frac{1}{3}$B.$\frac{\sqrt{2}}{3}$C.$\frac{2\sqrt{2}}{3}$D.$\frac{3\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在Rt△ABC中,c為斜邊長(zhǎng),a,b為兩直角邊長(zhǎng),若直線l:ax+by+c=0與圓C:(x-1)2+(y+2)2=1相交,則直線l的斜率的取值范圍是(-2,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.?dāng)?shù)列{an}中,a1=a>0,a≠1,$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{2}{1+{a}_{n}}$,數(shù)列{bn}滿足anbn=1-an
(1)求證:{bn}為等比數(shù)列,并求an
(2)試確定an+1和an的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,由四個(gè)邊長(zhǎng)為1的等邊三角形拼成一個(gè)邊長(zhǎng)為2的等邊三角形,各項(xiàng)點(diǎn)依次為,A1,A2,A3,…A6則$\overrightarrow{{A_1}{A_2}}•\overrightarrow{{A_j}{A_i}},({i,j∈[{1,2,3,…6}]})$的值組成的集合為( 。
A.{-2,-1,0,1,2}B.$\left\{{-2,-1,-\frac{1}{2},0,\frac{1}{2},1,2}\right\}$
C.$\left\{{-\frac{3}{2},-1,-\frac{1}{2},0,\frac{1}{2},1,\frac{3}{2}}\right\}$D.$\left\{{-2,-\frac{3}{2},-1,-\frac{1}{2},0,\frac{1}{2},1,\frac{3}{2},2}\right\}$

查看答案和解析>>

同步練習(xí)冊(cè)答案