分析 設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),利用k1=$\sqrt{2}$k2,可得y1+y2=$\frac{\sqrt{2}}{2}$(y3+y4)設(shè)AC所在直線(xiàn)方程為x=ty+4,代入拋物線(xiàn)方程,求出y1y3=-4a,同理y2y4=-4a,進(jìn)而可得y1y2=-2$\sqrt{2}$a,設(shè)AB所在直線(xiàn)方程為x=ty+$\frac{a}{4}$,代入拋物線(xiàn)方程,即可得出結(jié)論.
解答 解:設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),則
k1=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{a}{{y}_{1}+{y}_{2}}$,k2=$\frac{a}{{y}_{3}+{y}_{4}}$,
∵k1=$\sqrt{2}$k2,
∴y1+y2=$\frac{\sqrt{2}}{2}$(y3+y4).
設(shè)AC所在直線(xiàn)方程為x=ty+4,代入拋物線(xiàn)方程,可得y2-aty-4a=0,
∴y1y3=-4a,
同理y2y4=-4a,
∴y1+y2=$\frac{\sqrt{2}}{2}$($\frac{-4a}{{y}_{1}}$+$\frac{-4a}{{y}_{2}}$),
∴y1y2=-2$\sqrt{2}$a,
設(shè)AB所在直線(xiàn)方程為x=ty+$\frac{a}{4}$,代入拋物線(xiàn)方程,可得y2-aty-$\frac{{a}^{2}}{4}$=0,
∴y1y2=-$\frac{{a}^{2}}{4}$,
∴-2$\sqrt{2}$a=-$\frac{{a}^{2}}{4}$,
∴a=8$\sqrt{2}$.
故答案為:8$\sqrt{2}$.
點(diǎn)評(píng) 本題考查拋物線(xiàn)方程,考查直線(xiàn)與拋物線(xiàn)的位置關(guān)系,考查韋達(dá)定理,考查學(xué)生分析解決問(wèn)題的能力,正確運(yùn)用韋達(dá)定理是關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | [2,+∞) | B. | (2,+∞) | C. | ($\frac{3}{2}$,2] | D. | [$\frac{3}{2}$,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 右上方 | B. | 右下方 | C. | 左上方 | D. | 左下方 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com