分析 先確定直線(xiàn)m,n恒過(guò)定點(diǎn)M(2,2),圓心O(0,0),半徑R=4,AC2+BD2為定值,表示出面積,即可求四邊形ABCD的面積的最大值和最小值.
解答 解:由題意可得,直線(xiàn)m,n恒過(guò)定點(diǎn)M(2,2),圓心O(0,0),半徑R=4,
設(shè)弦AC,BD的中點(diǎn)分別為E,F(xiàn),則OE2+OF2=OM2=8,
AC=2$\sqrt{16-O{E}^{2}}$,BD=2$\sqrt{16-O{F}^{2}}$,
∴AC2+BD2=4(32-OE2-OF2)=96,
∴S2≤$\frac{1}{4}$AC2•BD2=$\frac{1}{4}$AC2•(96-AC2)≤$\frac{1}{4}•(\frac{A{C}^{2}+96-A{C}^{2}}{2})^{2}$=576,
∴S≤24,當(dāng)且僅當(dāng)AC2=96-AC2,即AC=4$\sqrt{3}$時(shí),取等號(hào),
故四邊形ABCD面積S的最大值為24.
故答案為:24.
點(diǎn)評(píng) 本題主要考查直線(xiàn)過(guò)定點(diǎn),考查面積的計(jì)算,基本不等式的應(yīng)用,正確運(yùn)用代入法是解題的關(guān)鍵,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -1 | B. | -2 | C. | -3 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{x^2}{16}-\frac{y^2}{15}=1$ | B. | $\frac{x^2}{16}-\frac{y^2}{12}=1$ | C. | $\frac{x^2}{16}-\frac{y^2}{9}=1$ | D. | $\frac{x^2}{16}-\frac{y^2}{3}=1$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com