欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

5.絕對值|x-1|的幾何意義是數(shù)軸上的點x與點1之間的距離,那么對于實數(shù)a,b,|x-a|+|x-b|的幾何意義即為點x與點a、點b的距離之和.
(1)直接寫出|x-1|+|x-2|與|x-1|+|x-2|+|x-3|的最小值,并寫出取到最小值時x滿足的條件;
(2)設a1≤a2≤…≤an是給定的n個實數(shù),記S=|x-a1|+|x-a2|+…+|x-an|.試猜想:若n為奇數(shù),則當x∈{${a}_{\frac{n+1}{2}}$}時S取到最小值;若n為偶數(shù),則當x∈[${a}_{\frac{n}{2}}$,${a}_{\frac{n}{2}+1}$]時,S取到最小值;(直接寫出結(jié)果即可)
(3)求|x-1|+|2x-1|+|3x-1|+…+|10x-1|的最小值.

分析 (1)根據(jù)絕對值的幾何意義,可得當且僅當x∈[1,2]時,|x-1|+|x-2|取最小值1;當且僅當x=2時,|x-1|+|x-2|+|x-3|取最小值2;
(2)歸納可得:若n為奇數(shù),則當x∈{${a}_{\frac{n+1}{2}}$}時S取到最小值;若n為偶數(shù),則當x∈[${a}_{\frac{n}{2}}$,${a}_{\frac{n}{2}+1}$]時,S取到最小值;
(3)根據(jù)(2)中結(jié)論,可得x=$\frac{1}{7}$時,|x-1|+|2x-1|+|3x-1|+…+|10x-1|取最小值.

解答 解:(1)|x-1|+|x-2|的最小值為1,當且僅當x∈[1,2]時,取最小值;
|x-1|+|x-2|+|x-3|的最小值2,當且僅當x=2時,取最小值;
(2)設a1≤a2≤…≤an是給定的n個實數(shù),記S=|x-a1|+|x-a2|+…+|x-an|.
歸納可得:
若n為奇數(shù),則當x∈{${a}_{\frac{n+1}{2}}$}時S取到最小值;
若n為偶數(shù),則當x∈[${a}_{\frac{n}{2}}$,${a}_{\frac{n}{2}+1}$]時,S取到最小值;
(3)|x-1|+|2x-1|+|3x-1|+…+|10x-1|=|x-1|+2|x-$\frac{1}{2}$|+3|x-$\frac{1}{3}$|+…+10|x-$\frac{1}{10}$|,
共55項,其中第28項為|x-$\frac{1}{7}$|,
故x=$\frac{1}{7}$時,|x-1|+|2x-1|+|3x-1|+…+|10x-1|取最小值:$\frac{6}{7}$+$\frac{5}{7}$+$\frac{4}{7}$+$\frac{3}{7}$+$\frac{2}{7}$+$\frac{1}{7}$+0+$\frac{1}{7}$+$\frac{2}{7}$+$\frac{3}{7}$=$\frac{27}{7}$,
故答案為:{${a}_{\frac{n+1}{2}}$},[${a}_{\frac{n}{2}}$,${a}_{\frac{n}{2}+1}$]

點評 歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達的一般性命題(猜想).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.(1)求函數(shù)$y=\sqrt{\frac{(x-1)(x+2)}{(x-2)}}$的定義域.
(2)若(m+1)x2-(m-1)x+3(m-1)<0對任何實數(shù)x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.f(x)=logax,g(x)=2loga(2x+t-2),(a>0,a≠1,t∈R).
(1)當$t=4,x∈[{\frac{1}{4},2}]$時,F(xiàn)(x)=g(x)-f(x)的最小值是-2,求a的值;
(2)當$0<a<1,x∈[{\frac{1}{4},2}]$時,有f(x)≥g(x)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知直線m,l和平面α,β,且l⊥α,m?β,給出下列四個命題:
①α∥β⇒l⊥m②α⊥β⇒l∥m③l∥m⇒α⊥β④l⊥m⇒α∥β
其中真命題的有①③(請?zhí)顚懭空_命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.實數(shù)a>1,b>1是a+b>2的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知下列命題:①若$\overrightarrow{a}•\overrightarrow$<0,則$\overrightarrow$與$\overrightarrow{a}$的夾角為鈍角;②a,b∈C,則“ab∈R”是“a,b互為共軛復數(shù)”的必要非充分條件;③一個骰子連續(xù)投2次,點數(shù)和為4的概率為$\frac{1}{9}$;④若n為正奇數(shù),則6n+${C}_{n}^{1}{6}^{n-1}$+${C}_{n}^{2}{6}^{n-2}$+…+${C}_{n}^{n-1}6-1$被8除的余數(shù)是5,其中正確的序號是②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知不等式組$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+2y-4≤0}\end{array}\right.$表示的平面區(qū)域恰好被面積最小的圓C:(x-a)2+(y-b)2=r2及其內(nèi)部所覆蓋,則圓C的方程為(  )
A.(x-1)2+(y-2)2=5B.(x-2)2+(y-1)2=8C.(x-4)2+(y-1)2=6D.(x-2)2+(y-1)2=5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知數(shù)列{an}的前n項和${S_n}={n^2}$,則a5的值為( 。
A.9B.11C.15D.25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知曲線y=x3+3x2+6x-10,點P(x,y)在該曲線上移動,在P點處的切線設為l.
(1)求證:此函數(shù)在R上單調(diào)遞增;
(2)求l的斜率的范圍.

查看答案和解析>>

同步練習冊答案