分析 由f(x-1)為奇函數(shù),f(x+3)為偶函數(shù),可求出f(x)的周期為16.所以f(2014)+f(2015)=f(-2)+f(-1)即可求出.
解答 解:∵f(x-1)為奇函數(shù),
∴f(x-1)=-f(-x-1).①
對(duì)①式 令x=1 得 f(0)=-f(-2)
∴f(-2)=-f(0)=-3.
對(duì)①式 令x=0 得 f(-1)=-f(-1)
∴f(-1)=0
∵f(x+3)為偶函數(shù),
∴f(x+3)=f(-x+3)②
由①②可知
f(x)=f[(x+1)-1]=-f[-(x+1)-1]=-f(-x-2)
=-f[(-x-5)+3]=-f[(x+5)+3]=-f(x+8).
∵f(x)=-f(x+8),
∴f(x+8)=-f(x+8+8)=-f(x+16),
∴f(x)=f(x+16),
∴f(x)是以16為周期的周期函數(shù).
∴f(2014)=f(126×16-2)=f(-2)=-3,f(2015)=f(126×16-1)=f(-1)=0.
∴f(2014)+f(2015)=-3
故答案為-3.
點(diǎn)評(píng) 本題考查函數(shù)奇偶性的性質(zhì),求得f(x)的周期是關(guān)鍵,考查學(xué)生理解奇偶函數(shù)的性質(zhì)并靈活轉(zhuǎn)化運(yùn)用的能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 32$\sqrt{3}$ | B. | $\frac{5\sqrt{3}}{3}$ | C. | 23$\sqrt{3}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com