分析 根據(jù)拋物線方程設(shè)P點坐標(biāo),分別表示出其到準(zhǔn)線方程和到原點的距離,使其相等進(jìn)而求得a,則P的坐標(biāo)可得.
解答 解:設(shè)點P坐標(biāo)為($\frac{1}{8}$a2,a)
依題意可知拋物線的準(zhǔn)線方程為x=-2
$\frac{1}{8}$a2+2=$\sqrt{\frac{1}{64}{a}^{4}+{a}^{2}}$,求得a=±2$\sqrt{2}$
∴點P的坐標(biāo)為( 1,±2$\sqrt{2}$)
故答案為:( 1,±2$\sqrt{2}$).
點評 本題主要考查了兩點間的距離公式、拋物線的簡單性質(zhì),屬基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4$\sqrt{2}$ | B. | 8 | C. | 8$\sqrt{2}$ | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ($\frac{π}{3}$+$\frac{kπ}{2}$,$\frac{5π}{12}$+$\frac{kπ}{2}$),k∈z | B. | [$\frac{π}{6}$+$\frac{kπ}{2}$′$\frac{7π}{12}$$+\frac{kπ}{2}$),k∈z | ||
| C. | [$\frac{π}{6}$+$\frac{kπ}{2}$′$\frac{5π}{6}$+$\frac{kπ}{2}$),k∈z | D. | [$\frac{π}{3}$+$\frac{kπ}{2}$,$\frac{5π}{12}$+$\frac{kπ}{2}$),k∈z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | [$\frac{1}{2}$,1] | B. | (-∞,-1]∪[1,+∞) | C. | [-1,1] | D. | [-1,$\frac{1}{2}$] |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com