分析 (Ⅰ)根據(jù)面面平行的判定定理進行證明平面A1BD1∥平面AC1D;
(Ⅱ)根據(jù)線面垂直的性質定理即可證明BC1⊥B1D.
解答
證明:(Ⅰ)∵A1B∥平面AC1D,
∴設A1C的中點為E,
則平面A1BC∩平面AC1D=ED,
∴A1B∥ED;
∵E是AC1的中點,
∴D是BC的中點,
即BDC1D1為平行四邊形,
∴BD1∥DC1,A1D1∥AD,
∵BD1,A1D1?平面A1BD1,AD?平面AC1D,
∴平面A1BD1∥平面AC1D;
(Ⅱ)∵BC1⊥AB1,BC1⊥AC1,
∴BC1⊥FB1,
∵AB1∩B1F=B1,
∴BC1⊥平面AB1F,
∵DB1?平面AB1F,
∴BC1⊥B1D.
點評 本題主要考查面面平行和線面垂直性質定理的應用,要求熟練掌握相應的判定定理和性質定理.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{2}{3}({π+1})$ | B. | $\frac{4}{3}$(π+1) | C. | $\frac{4}{3}$(π+$\frac{1}{2}$) | D. | $\frac{2}{3}$(π+$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 2 | B. | $\sqrt{5}$ | C. | $\sqrt{10}$ | D. | 2$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 560 | B. | 880 | C. | 1120 | D. | 1440 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | y=-$\frac{1}{2a}$ | B. | y=-$\frac{1}{4a}$ | C. | y=$\frac{1}{2a}$ | D. | y=$\frac{1}{4a}$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com