欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1,(a>0,b>0)$的左右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)右焦點(diǎn)F2的直線交雙曲線于A,B兩點(diǎn),連接AF1,BF1.若|AB|=|BF1|,且∠ABF1=90°,則雙曲線的離心率為$\sqrt{5-2\sqrt{2}}$.

分析 設(shè)|BF1|=n,由題意可得|AB|=n,|AF1|=$\sqrt{2}$n,運(yùn)用雙曲線的定義和勾股定理,化簡(jiǎn)整理,由離心率公式計(jì)算即可得到所求值.

解答 解:設(shè)|BF1|=n,由|AB|=|BF1|,且∠ABF1=90°,可得
|AB|=n,|AF1|=$\sqrt{2}$n,
由雙曲線的定義可得|BF1|-|BF2|=2a,
即有|BF2|=n-2a,
又|AF1|-|AF2|=2a,可得|AF2|=$\sqrt{2}$n-2a,
由|AB|=($\sqrt{2}$+1)n-4a=n,
解得n=2$\sqrt{2}$a,
在△F1F2B中,由|BF1|2+|BF2|2=|F1F2|2,
即為(2$\sqrt{2}$a)2+(2$\sqrt{2}$-2)2a2=4c2,
化為c2=(5-2$\sqrt{2}$)a2,
可得e=$\frac{c}{a}$=$\sqrt{5-2\sqrt{2}}$,
故答案為:$\sqrt{5-2\sqrt{2}}$,

點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,運(yùn)用雙曲線的定義和勾股定理是解決本題的關(guān)鍵,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.分別計(jì)算31+51,32+52,33+53,34+54,35+55,…,并根據(jù)計(jì)算的結(jié)果,猜想32017+52017的末位數(shù)字為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=x2(2x-2-x),則不等式f(2x+1)+f(1)<0的解集是( 。
A.$({-∞,-\frac{1}{2}})$B.(-∞,-1)C.$({-\frac{1}{2},+∞})$D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若函數(shù)f(x)=sin(ωx-$\frac{π}{6}$)(ω>0)的圖象相鄰兩個(gè)對(duì)稱中心之間的距離為$\frac{π}{2}$,則f(x)的一個(gè)單調(diào)遞增區(qū)間為( 。
A.(-$\frac{π}{6}$,$\frac{π}{3}$)B.(-$\frac{π}{3}$,$\frac{π}{6}$)C.($\frac{π}{6}$,$\frac{2π}{3}$)D.($\frac{π}{3}$,$\frac{5π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.?dāng)?shù)學(xué)上稱函數(shù)y=kx+b(k,b∈R,k≠0)為線性函數(shù).對(duì)于非線性可導(dǎo)函數(shù)f(x),在點(diǎn)x0附近一點(diǎn)x的函數(shù)值f(x),可以用如下方法求其近似代替值:f(x)≈f(x0)+f'(x0)(x-x0).利用這一方法,$m=\sqrt{4.001}$的近似代替值( 。
A.大于mB.小于m
C.等于mD.與m的大小關(guān)系無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若復(fù)數(shù)(a2-l)+(a-1)i(i為虛數(shù)單位)是純虛數(shù),則實(shí)數(shù)a=( 。
A.±1B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知集合A={x|1<x<3},B={x|2m<x<1-m},其中m<$\frac{1}{3}$.
(1)當(dāng)m=-1時(shí),求A∪B;
(2)若A⊆B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.一家商場(chǎng)為了確定營(yíng)銷策略,進(jìn)行了投入促銷費(fèi)用x和商場(chǎng)實(shí)際銷售額y的試驗(yàn),得到如下四組數(shù)據(jù).
投入促銷費(fèi)用x(萬(wàn)元)2356
商場(chǎng)實(shí)際營(yíng)銷額y(萬(wàn)元)100200300400
(1)求出x,y之間的回歸直線方程$\widehaty$=$\widehatb$x+$\widehata$;
(2)若該商場(chǎng)計(jì)劃營(yíng)銷額不低于600萬(wàn)元,則至少要投入多少萬(wàn)元的促銷費(fèi)用?
(注:$b=\frac{{\sum _{i=1}^n({{x_i}-\bar x})({{y_i}-\bar y})}}{{\sum _{i=1}^n{{({{x_i}-\bar x})}^2}}}=\frac{{\sum _{i=1}^n{x_i}{y_i}-n•\bar x•\bar y}}{{\sum _{i=1}^nx_i^2-n•{{\bar x}^2}}},a=\bar y-b•\bar x$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)兩個(gè)非零向量$\vec a$與$\vec b$不共線.
(1)若$\overrightarrow{AB}=\vec a+\vec b,\overrightarrow{BC}=2\vec a+8\vec b,\overrightarrow{CD}=3({\vec a-\vec b})$,求證:A,B,D三點(diǎn)共線
(2)試確定實(shí)數(shù)k,使$k\vec a+\vec b$和$\vec a+k\vec b$反向共線.

查看答案和解析>>

同步練習(xí)冊(cè)答案