分析 (Ⅰ)設(shè)D(m,n),則由四邊形ABCD為平行四邊形,可得(6-3,-3+4)=(2-m,-6-n),求出m,n,可得D點(diǎn)坐標(biāo);
(Ⅱ)利用$\overrightarrow{OA}=x\overrightarrow{OB}+y\overrightarrow{OC}$,可得(3,-4)=x(6,-3)+y(2,-6),所以$\left\{\begin{array}{l}{6x+2y=3}\\{-3x-6y=-4}\end{array}\right.$,求出x,y,即可求實(shí)數(shù)$\frac{y}{x}$的值.
解答 解:(Ⅰ)設(shè)D(m,n),則由四邊形ABCD為平行四邊形,可得(6-3,-3+4)=(2-m,-6-n),
所以2-m=3,-6-n=1,所以m=-1,n=-7,
所以D(-1,-7);
(Ⅱ)因?yàn)?\overrightarrow{OA}=x\overrightarrow{OB}+y\overrightarrow{OC}$,
所以(3,-4)=x(6,-3)+y(2,-6),
所以$\left\{\begin{array}{l}{6x+2y=3}\\{-3x-6y=-4}\end{array}\right.$,
所以x=$\frac{1}{3}$,y=$\frac{1}{2}$,
所以$\frac{y}{x}$=$\frac{3}{2}$.
點(diǎn)評(píng) 本題考查向量的線性運(yùn)算,考查平面向量基本定理,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (4$\sqrt{3}$,$\frac{π}{6}$) | B. | (4$\sqrt{3}$,$\frac{π}{3}$) | C. | (4$\sqrt{3}$,$\frac{11π}{6}$) | D. | (4$\sqrt{3}$,-$\frac{π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (-∞,-$\frac{3}{5}$) | B. | ($\frac{1}{4}$,$\frac{3}{5}$) | C. | ($\frac{1}{4}$,+∞) | D. | ($\frac{3}{5}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0.90 | B. | 0.78 | C. | 0.60 | D. | 0.40 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com