【題目】已知橢圓
的左、右焦點(diǎn)分別是
,
,
,
是其左右頂點(diǎn),點(diǎn)
是橢圓
上任一點(diǎn),且
的周長(zhǎng)為6,若
面積的最大值為
.
(1)求橢圓
的方程;
(2)若過點(diǎn)
且斜率不為0的直線交橢圓
于
,
兩個(gè)不同點(diǎn),證明:直線
與
的交點(diǎn)在一條定直線上.
【答案】(1)
(2)見解析
【解析】
(1)利用橢圓的定義,可求出
周長(zhǎng)的表達(dá)式,當(dāng)
點(diǎn)是橢圓的上(或下)頂點(diǎn)時(shí),
面積有最大值為
,列出等式,結(jié)合
,求出橢圓方程;
(2)設(shè)出直線
的方程,與橢圓方程聯(lián)立,得到一個(gè)一元二次方程,求出直線
與
的交點(diǎn)的坐標(biāo),結(jié)合一元二次方程根與系數(shù)關(guān)系,得出結(jié)論。
解:(1)由題意得![]()
橢圓
的方程為
;
(2)由(1)得
,
,
,設(shè)直線
的方程為
,
,
,由
,得
,
,
,
,
直線
的方程為
,直線
的方程為
,
,
,
,
直線
與
的交點(diǎn)在直線
上.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著移動(dòng)互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機(jī)
軟件層出不窮.為調(diào)查某款訂餐軟件的商家的服務(wù)情況,統(tǒng)計(jì)了10次訂餐“送達(dá)時(shí)間”,得到莖葉圖如下:(時(shí)間:分鐘)
![]()
(1)請(qǐng)計(jì)算“送達(dá)時(shí)間”的平均數(shù)與方差:
(2)根據(jù)莖葉圖填寫下表:
送達(dá)時(shí)間 | 35分組以內(nèi)(包括35分鐘) | 超過35分鐘 |
頻數(shù) | A | B |
頻率 | C | D |
在答題卡上寫出
,
,
,
的值;
(3)在(2)的情況下,以頻率代替概率.現(xiàn)有3個(gè)客戶應(yīng)用此軟件訂餐,求出在35分鐘以內(nèi)(包括35分鐘)收到餐品的人數(shù)
的分布列,并求出數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某精準(zhǔn)扶貧幫扶單位,為幫助定點(diǎn)扶貧村真正脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助精準(zhǔn)扶貧戶利用互聯(lián)網(wǎng)電商渠道銷售當(dāng)?shù)靥禺a(chǎn)蘋果.蘋果單果直徑不同單價(jià)不同,為了更好的銷售,現(xiàn)從該精準(zhǔn)扶貧戶種植的蘋果樹上隨機(jī)摘下了50個(gè)蘋果測(cè)量其直徑,經(jīng)統(tǒng)計(jì),其單果直徑分布在區(qū)間[50,95]內(nèi)(單位:
),統(tǒng)計(jì)的莖葉圖如圖所示:
![]()
(Ⅰ)按分層抽樣的方法從單果直徑落在[80,85),[85,90)的蘋果中隨機(jī)抽取6個(gè),再從這6個(gè)蘋果中隨機(jī)抽取2個(gè),求這兩個(gè)蘋果單果直徑均在[85,90)內(nèi)的概率;
(Ⅱ)以此莖葉圖中單果直徑出現(xiàn)的頻率代表概率.已知該精準(zhǔn)扶貧戶有20000個(gè)約5000千克蘋果待出售,某電商提出兩種收購方案:
方案
:所有蘋果均以5.5元/千克收購;
方案
:按蘋果單果直徑大小分3類裝箱收購,每箱裝25個(gè)蘋果,定價(jià)收購方式為:?jiǎn)喂睆?在[50,65)內(nèi)按35元/箱收購,在[65,90)內(nèi)按50元/箱收購,在[90,95]內(nèi)按35元/箱收購.包裝箱與分揀裝箱工費(fèi)為5元/箱.請(qǐng)你通過計(jì)算為該精準(zhǔn)扶貧戶推薦收益最好的方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中的真命題是( )
A. 若
,則向量
與
的夾角為鈍角
B. 若
,則![]()
C. 若命題“
是真命題”,則命題“
是真命題”
D. 命題“
,
”的否定是“
,
”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
的圓心坐標(biāo)為
,且該圓經(jīng)過點(diǎn)
.
![]()
(1)求圓
的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)
也在圓
上,且弦
長(zhǎng)為8,求直線
的方程;
(3)直線
交圓
于
,
兩點(diǎn),若直線
,
的斜率之積為2,求證:直線
過一個(gè)定點(diǎn),并求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在長(zhǎng)方體ABCD-A1B1C1D1中(如圖),AD=AA1=1,AB=2,點(diǎn)E是棱AB的中點(diǎn).
![]()
(1)求異面直線AD1與EC所成角的大。
(2)《九章算術(shù)》中,將四個(gè)面都是直角三角形的四面體稱為鱉臑,試問四面體D1CDE是否為鱉臑?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C
上,過M作x軸的垂線,垂足為N,點(diǎn)P滿足
.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)
在直線
上,且
.證明:過點(diǎn)P且垂直于OQ的直線
過C的左焦點(diǎn)F.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com