【題目】在長(zhǎng)方體ABCD-A1B1C1D1中(如圖),AD=AA1=1,AB=2,點(diǎn)E是棱AB的中點(diǎn).
![]()
(1)求異面直線AD1與EC所成角的大;
(2)《九章算術(shù)》中,將四個(gè)面都是直角三角形的四面體稱為鱉臑,試問(wèn)四面體D1CDE是否為鱉臑?并說(shuō)明理由.
【答案】(1)
(2)見(jiàn)解析
【解析】
(1)取CD中點(diǎn)F,連接AF,則AF∥EC,即∠D1AF為異面直線AD1與EC所成角,解三角形可得△AD1F為等邊三角形,從而得到異面直線AD1與EC所成角的大;
(2)證明DE⊥CE,進(jìn)一步得到D1E⊥CE,可知四面體D1CDE是鱉臑.
解:(1)取CD中點(diǎn)F,連接AF,則AF∥EC,
![]()
∴∠D1AF為異面直線AD1與EC所成角.
在長(zhǎng)方體ABCD-A1B1C1D1中,由AD=AA1=1,AB=2,
得![]()
∴△AD1F為等邊三角形,則
.
∴異面直線AD1與EC所成角的大小為
;
(2)連接DE,∵E為AB的中點(diǎn),∴DE=EC=
,
又CD=2,∴DE2+CE2=DC2,得DE⊥CE.
∵D1D⊥底面DEC,則D1D⊥CE,∴CE⊥平面D1DE,得D1E⊥CE.
∴四面體D1CDE的四個(gè)面都是直角三角形,
故四面體D1CDE是鱉臑.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)某種產(chǎn)品的年固定成本為200萬(wàn)元,每生產(chǎn)
千件,需另投入成本為
,當(dāng)年產(chǎn)量不足80千件時(shí),
(萬(wàn)元).當(dāng)年產(chǎn)量不小于80千件時(shí),
(萬(wàn)元).每件商品售價(jià)為0.05萬(wàn)元.通過(guò)市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.
(1)寫(xiě)出年利潤(rùn)
(萬(wàn)元)關(guān)于年產(chǎn)量
(千件)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓經(jīng)過(guò)(2,5),(﹣2,1)兩點(diǎn),并且圓心在直線y
x上.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)求圓上的點(diǎn)到直線3x﹣4y+23=0的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,正確的有( )
A.向量
與
是共線向量,則點(diǎn)
、
、
、
必在同一條直線上
B.若
且
,則角
為第二或第四象限角
C.函數(shù)
是周期函數(shù),最小正周期是![]()
D.
中,若
,則
為鈍角三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)對(duì)任意的實(shí)數(shù)
,恒有
成立,求實(shí)數(shù)
的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,當(dāng)實(shí)數(shù)
取最小值時(shí),討論函數(shù)
在
時(shí)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(其中
為常數(shù)且
)在
處取得極值.
(1)當(dāng)
時(shí),求
的極大值點(diǎn)和極小值點(diǎn);
(2)若
在
上的最大值為1,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若
是
的導(dǎo)函數(shù),討論
的單調(diào)性;
(2)若
(
是自然對(duì)數(shù)的底數(shù)),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長(zhǎng)為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
![]()
(Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)證明:在線段BC1存在點(diǎn)D,使得AD⊥A1B,并求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,圓
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求圓
的普通方程和直線
的直角坐標(biāo)方程;
(2)若直線
與圓
交于
兩點(diǎn),
是圓
上不同于
兩點(diǎn)的動(dòng)點(diǎn),求
面積的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com