欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

13.直線2x-3y=12在x軸上的截距為a,在y軸上的截距為b,則( 。
A.a=6,b=4B.a=-6,b=-4C.a=-6,b=4D.a=6,b=-4

分析 直線2x-3y=12化為解集式:$\frac{x}{6}+\frac{y}{-4}$=1.即可得出.

解答 解:直線2x-3y=12化為:$\frac{x}{6}+\frac{y}{-4}$=1.
∴a=6,b=-4.
故選:D.

點(diǎn)評(píng) 本題考查了直線的截距式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖所示莖葉圖記錄了甲、乙兩組各四名同學(xué)在某次數(shù)學(xué)測(cè)驗(yàn)中的成績(jī).甲組記錄中有一個(gè)數(shù)字模糊,無(wú)法確認(rèn),在圖中以x表示.
(Ⅰ)如果甲組同學(xué)與乙組同學(xué)的平均成績(jī)一樣,求x;
(Ⅱ)如果x=7,分別從甲、乙兩組同學(xué)中各隨機(jī)選取一名,求這兩名同學(xué)的數(shù)學(xué)成績(jī)均不低于90的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列有關(guān)命題的說(shuō)法中正確的是(  )
A.若命題“p∧q”為假,則“p∨q”也為假
B.命題“?x0∈R,x${\;}_{0}^{2}$+x0+1<0”的否定是“?x∈R,x2+x+1<0”
C.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”
D.命題“若x=y,則sinx=siny”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如圖四面體O-ABC中,$\overrightarrow{OA}$=$\overrightarrow{a}$ $\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,D為AB的中點(diǎn),M為CD的中點(diǎn),則$\overrightarrow{CM}$=$\frac{1}{4}\overrightarrow{a}$+$\frac{1}{4}\overrightarrow$-$\frac{1}{2}\overrightarrow{c}$($\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$用表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在正三棱柱ABC-A1B1C1中,若AB1⊥BC1,則下列關(guān)于直線A1C和AB1,BC1的關(guān)系的判斷正確的為( 。
A.A1C和AB1,BC1都垂直B.A1C和AB1垂直,和BC1不垂直
C.A1C和AB1,BC1都不垂直D.A1C和AB1不垂直,和BC1垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如果3個(gè)整數(shù)可作為一直角三角形三條邊的邊長(zhǎng),則稱這3個(gè)數(shù)為一組勾股數(shù),從2,3,4,5中任取3個(gè)不同的數(shù),則3個(gè)數(shù)構(gòu)成一組勾股數(shù)的概率為(  )
A.$\frac{1}{20}$B.$\frac{1}{5}$C.$\frac{1}{10}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知命題p:關(guān)于x的函數(shù)y=x2-3ax+4在[1,+∞)上是增函數(shù),命題q:函數(shù)y=(2a-1)x為減函數(shù),若“p且q”為假命題,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,$\frac{1}{2}$]∪($\frac{2}{3}$,+∞)B.(-∞,$\frac{1}{2}$]C.($\frac{2}{3}$,+∞)D.($\frac{1}{2}$,$\frac{2}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若sin(α+$\frac{π}{4}$)=$\frac{3}{5}$,且α∈($\frac{π}{4}$,$\frac{5π}{4}$),則cosα=( 。
A.-$\frac{7\sqrt{2}}{10}$B.$\frac{\sqrt{2}}{10}$C.$\frac{7\sqrt{2}}{10}$D.-$\frac{\sqrt{2}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.從集合{3,5,7,9,11}中任取兩個(gè)元素,①相加可得多少個(gè)不同的和?②相除可得多少個(gè)不同的商?③作為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1中的a,b,可以得到多少個(gè)焦點(diǎn)在x軸上的橢圓方程?④作為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1中的a,b,可以得到多少個(gè)焦點(diǎn)在x軸上的雙曲線方程?上面四個(gè)問(wèn)題屬于排列問(wèn)題的是( 。
A.①②③④B.②④C.②③D.①④

查看答案和解析>>

同步練習(xí)冊(cè)答案