欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.已知△ABC外接圓O的半徑為2,且$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AO}$,|$\overrightarrow{AB}$|=|$\overrightarrow{AO}$|,則$\overrightarrow{CA}•\overrightarrow{CB}$=12.

分析 運用平面向量的三角形法則,以及外心的特點,可得O為BC的中點,三角形ABC為直角三角形,
再由勾股定理和向量的數(shù)量積定義,即可求出結(jié)果.

解答 解:如圖所示,

△ABC的外接圓的半徑為2,且$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AO}$,
∴($\overrightarrow{OB}$-$\overrightarrow{OA}$)+($\overrightarrow{OC}$-$\overrightarrow{OA}$)=2$\overrightarrow{AO}$,
∴$\overline{OB}$+$\overrightarrow{OC}$=2$\overrightarrow{AO}$+2$\overrightarrow{OA}$=$\overrightarrow{0}$,
∴O為BC的中點,
即AB⊥AC;
又|$\overrightarrow{AB}$|=|$\overrightarrow{AO}$|,
∴△ABO為等邊三角形,且邊長為2,
由勾股定理得,AC=$\sqrt{{BC}^{2}{-AB}^{2}}$=2$\sqrt{3}$,
則$\overrightarrow{CA}$•$\overrightarrow{CB}$=|$\overrightarrow{CA}$|•|$\overrightarrow{CB}$|•cos∠ACB=2$\sqrt{3}$×4×$\frac{\sqrt{3}}{2}$=12.
故答案為:12.

點評 本題考查了平面向量的三角形法則和數(shù)量積的定義應用問題,也考查了三角形的外心概念與勾股定理的運用,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知A(1,0),B(0,2),C(cosα,sinα),(0<α<π).
(Ⅰ)若$|\overrightarrow{OA}+\overrightarrow{OC}|=\sqrt{2+\sqrt{3}}$(O為坐標原點),求$\overrightarrow{OB}$與$\overrightarrow{OC}$的夾角;
(Ⅱ)若$\overrightarrow{AC}⊥\overrightarrow{BC}$,求3sinα-cosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設M是線段AB的中點,O是平面上的任意一點.試證:$\overrightarrow{OA}$-$\overrightarrow{OM}$=$\overrightarrow{OM}$$+\overrightarrow{BO}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.袋中裝有大小相同10個小球,其中6個紅色,4個白色,從中依次不放回地人取出3個球,求:
(1)取出3球恰好2紅1白的概率;
(2)取出3球依次為紅、白、紅的概率;
(3)第三次取到紅球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.中國最高的摩天輪是“南昌之星”,它的最高點離地面160米,直徑為156米,并以每30分鐘一周的速度勻速旋轉(zhuǎn),若從最低點開始計時,則摩天輪進行5分鐘后離地面的高度為( 。
A.41米B.43米C.78米D.118米

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在△ABC中,已知2∠C=∠A+∠B,c=2.
(1)求△ABC外接圓半徑R;
(2)求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知不等式組$\left\{\begin{array}{l}{y-1≥0}\\{x+y-4≤0}\\{y-1≤k(x-1)}\end{array}\right.$(k>0)表示的平面區(qū)域為D,若?(x,y)∈D,$\frac{y}{{x}^{2}}$≤1恒成立,則實數(shù)k的取值范圍是(0,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.函數(shù)f(x)=$\frac{sinx}{tan\frac{x}{2}}$+$\frac{sin2x}{tanx}$的最小值為$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知拋物線C1:y2=2x與橢圓C2:$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{4}$=1在第一象限交于點A,直線y=$\sqrt{2}$x+m與橢圓C2交于B、D兩點,且A,B,D三點兩兩互不重合.
(1)求m的取值范圍;
(2)△ABD的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由?
(3)求證:直線AB、AD的斜率之和為定值.

查看答案和解析>>

同步練習冊答案