欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

1.已知:求所有實(shí)數(shù)k,使得存在△ABC,滿足
(1)a+b=kc;
(2)cot$\frac{A}{2}$+cot$\frac{B}{2}$=kcot$\frac{C}{2}$.

分析 先利用正弦定理將第一個(gè)等式邊化角,第二個(gè)式子切化弦,然后借助于和差化積公式化簡(jiǎn),兩者結(jié)合可以構(gòu)造出關(guān)于k的方程,求解即可.

解答 解:由正弦定理得sinA+sinB=ksinC,即2sin$\frac{A+B}{2}$cos$\frac{A-B}{2}$=2ksin$\frac{C}{2}$cos$\frac{C}{2}$=2kcos$\frac{C}{2}$cos$\frac{A-B}{2}$.
顯然cos$\frac{C}{2}≠0$.所以$cos\frac{A-B}{2}=ksin\frac{C}{2}=kcos\frac{A+B}{2}$.
所以$cos\frac{A}{2}cos\frac{B}{2}+sin\frac{A}{2}sin\frac{B}{2}$=$k(cos\frac{A}{2}cos\frac{B}{2}-sin\frac{A}{2}sin\frac{B}{2})$.
整理得$tan\frac{A}{2}tan\frac{B}{2}=\frac{k-1}{k+1}$①
由cot$\frac{A}{2}$+cot$\frac{B}{2}$=kcot$\frac{C}{2}$得$\frac{cos\frac{A}{2}}{sin\frac{A}{2}}+\frac{cos\frac{B}{2}}{sin\frac{B}{2}}=k×\frac{cos\frac{C}{2}}{sin\frac{C}{2}}$.
即$\frac{sin\frac{B}{2}cos\frac{A}{2}+cos\frac{B}{2}sin\frac{A}{2}}{sin\frac{A}{2}sin\frac{B}{2}}=k×\frac{sin\frac{A+B}{2}}{cos\frac{A+B}{2}}$.
即$\frac{sin\frac{A+B}{2}}{sin\frac{A}{2}sin\frac{B}{2}}=k×\frac{sin\frac{A+B}{2}}{cos\frac{A}{2}cos\frac{B}{2}-sin\frac{A}{2}sin\frac{B}{2}}$.
化簡(jiǎn)得:tan$\frac{A}{2}$tan$\frac{B}{2}$=$\frac{1}{k+1}$②
由①②得$\frac{k-1}{k+1}=\frac{1}{k+1}$,解得k=2.

點(diǎn)評(píng) 本題考查了利用三角變換的方法構(gòu)造方程解決三角形中的求值問(wèn)題.強(qiáng)調(diào)化歸思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)y=$\sqrt{{x}^{2}-2x+a}$的定義域?yàn)镽,則實(shí)數(shù)a的取值集合為[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知(1+2i) z=3-i(i為虛數(shù)單位),則復(fù)數(shù)z=$\frac{1}{5}-\frac{7}{5}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.閱讀如圖所示的程序,該程序輸出的結(jié)果是27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,$\overrightarrow{OA}$、$\overrightarrow{OB}$的夾角是120°,$\overrightarrow{OA}$、$\overrightarrow{OC}$的夾角為30°,$\overrightarrow{OC}$=5,$\overrightarrow{OA}$、$\overrightarrow{OB}$表示$\overrightarrow{OC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=ln($\frac{1}{2}+\frac{1}{2}ax$)+x2-ax(a為常數(shù),且a>0).
(Ⅰ)若x=$\frac{1}{2}$是函數(shù)f(x)的一個(gè)極值點(diǎn),求a的值;
(Ⅱ)當(dāng)0<a≤2時(shí),判斷f(x)在[$\frac{1}{2},+∞)$上的單調(diào)性,并加以證明;
(Ⅲ)若對(duì)任意的a∈(1+$\frac{1}{n+1}$,2)(n∈N+,且n為常數(shù)),總存在x0∈[$\frac{1}{2},1$],使不等式f(x0)>m(1-a2)成立(m為正實(shí)數(shù)),試比較m與$\frac{n+1}{4n+6}$的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=x3+3ax2+3x+1.
(1)當(dāng)a=-$\sqrt{2}$時(shí),討論f(x)的單調(diào)性;
(2)討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知雙曲線$\frac{x^2}{4}-\frac{y^2}{b^2}=1({b>0})$離心率是$\frac{{\sqrt{5}}}{2}$,那么b等于( 。
A.1B.2C.$\sqrt{5}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,則f(1)=( 。
A.-$\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案