分析 把x≥0時(shí)的f(x)改寫成分段函數(shù),求出其最小值,由函數(shù)的奇偶性可得x<0時(shí)的函數(shù)的最大值,由對(duì)?x∈R,都有f(x-1)≤f(x),可得2a2-(-4a2)≤1,求解該不等式得答案.
解答 解:當(dāng)x≥0時(shí)
f(x)=$\left\{\begin{array}{l}{x-3{a}^{2},}&{x>2{a}^{2}}\\{-{a}^{2},}&{{a}^{2}<x≤2{a}^{2}}\\{-x,}&{0≤x≤{a}^{2}}\end{array}\right.$,![]()
作圖可知,當(dāng)x>0時(shí),f(x) 的最小值f(x)min=-a2,
∵函數(shù)f(x) 為奇函數(shù);
∴當(dāng)x<0 時(shí)f(x) 的最大值f(x)max=a2,
∵對(duì)任意實(shí)數(shù)x都有f(x-1)≤f(x),
∴3a2-(-3a2)≤1,
即6a2≤1,
解得$-\frac{\sqrt{6}}{6}$≤x≤$\frac{\sqrt{6}}{6}$,故實(shí)數(shù)的取值范圍是[$-\frac{\sqrt{6}}{6}$,$\frac{\sqrt{6}}{6}$],
故答案為:[$-\frac{\sqrt{6}}{6}$,$\frac{\sqrt{6}}{6}$]
點(diǎn)評(píng) 本題考查了恒成立問(wèn)題,考查分段函數(shù)的應(yīng)用以及函數(shù)奇偶性的性質(zhì),運(yùn)用了數(shù)學(xué)轉(zhuǎn)化思想方法是解決本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | [-$\frac{1}{3}$,1]∪[2,3) | B. | [-1,$\frac{1}{2}$]∪[$\frac{4}{3}$,$\frac{8}{3}$] | C. | [-$\frac{3}{2}$,$\frac{1}{2}$]∪[1,2] | D. | [-$\frac{3}{2}$,-$\frac{1}{3}$]∪[$\frac{1}{2}$,$\frac{4}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | p2 | B. | $\sqrt{3}$p2 | C. | 2p2 | D. | 2$\sqrt{3}$p2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com