【題目】已知橢圓C:
(
)的焦距為4,其短軸的兩個(gè)端點(diǎn)與長軸的一個(gè)端點(diǎn)構(gòu)成正三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F為橢圓C的左焦點(diǎn),T為直線
上任意一點(diǎn),過F作TF的垂線交橢圓C于點(diǎn)P,Q.
(i)證明:OT平分線段PQ(其中O為坐標(biāo)原點(diǎn));
(ii)當(dāng)
最小時(shí),求點(diǎn)T的坐標(biāo).
【答案】(1)
;(2)證明見解析,![]()
【解析】
(1)由題意
,又
,由此可求出
的值,從而求得橢圓的方程.(2)橢圓方程化為
.設(shè)PQ的方程為
,代入橢圓方程得:
.(ⅰ)設(shè)PQ的中點(diǎn)為
,求出
,只要
,即證得OT平分線段PQ.(ⅱ)可用
表示出PQ,TF可得:
化簡得:
.再根據(jù)取等號的條件,可得T的坐標(biāo).
(1)
,又
.
(2)橢圓方程化為
.
(ⅰ)設(shè)PQ的方程為
,代入橢圓方程得:
.
設(shè)PQ的中點(diǎn)為
,則![]()
又TF的方程為
,則
得
,
所以
,即OT過PQ的中點(diǎn),即OT平分線段PQ.
(ⅱ)
,又
,所以
.
當(dāng)
時(shí)取等號,此時(shí)T的坐標(biāo)為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
.
(1)求曲線C的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;
(2)若射線
與曲線C交于點(diǎn)A(不同于極點(diǎn)O),與直線l交于點(diǎn)B,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)甲、乙、丙三臺機(jī)器是否需要照顧相互之間沒有影響.已知在某1 h內(nèi),甲、乙都需要照顧的概率為0.05,甲、丙都需要照顧的概率為0.1,乙、丙都需要照顧的概率為0.125.
(1)求甲、乙、丙每臺機(jī)器在這1 h內(nèi)需要照顧的概率分別是多少?
(2)計(jì)算這1 h內(nèi)至少有一臺機(jī)器需要照顧的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是一個(gè)首項(xiàng)為2,公比為q(q
1)的等比數(shù)列,且3a1,2a2,a3成等差數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)已知數(shù)列{bn}的前n項(xiàng)和為Sn,b1=1,且
1(n≥2),求數(shù)列{an
bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用數(shù)學(xué)歸納法證明:
(1)
;
(2)
;
(3)設(shè)
,證明:
;
(4)
是13的倍數(shù)
;
(5)
,證明
能被
整除.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
,
)的周期為
,圖像的一個(gè)對稱中心為
,將函數(shù)
圖像上的所有點(diǎn)的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),在將所得圖像向右平移
個(gè)單位長度后得到函數(shù)
的圖像.
(1)求函數(shù)
與
的解析式;
(2)是否存在
,使得
,
,
按照某種順序成等差數(shù)列?若存在,請確定
的個(gè)數(shù);若不存在,說明理由.
(3)求實(shí)數(shù)a與正整數(shù)n,使得
在
內(nèi)恰有2013個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四位同學(xué)參加三項(xiàng)不同的競賽.
(1)每位同學(xué)必須參加一項(xiàng),有幾種不同結(jié)果?
(2)每項(xiàng)競賽只有且必須有一位同學(xué)參加,有幾種不同結(jié)果?
(3)每位同學(xué)最多參加一項(xiàng),且每項(xiàng)競賽只許有一位同學(xué)參加,有幾種不同結(jié)果?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD與BC是四面體ABCD中互相垂直的棱,BC=2. 若AD=2c,且AB+BD=AC+CD=2a,其中a、c為常數(shù),則四面體ABCD的體積的最大值是 .
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉行了全體學(xué)生的一分鐘跳繩比賽,為了了解學(xué)生的體質(zhì),隨機(jī)抽取了100名學(xué)生,其跳繩個(gè)數(shù)的頻數(shù)分布表如下:
一分鐘跳繩個(gè)數(shù) |
|
|
|
|
|
|
|
頻數(shù) | 6 | 12 | 18 | 30 | 16 | 10 | 8 |
(1)若將抽取的100名學(xué)生一分鐘跳繩個(gè)數(shù)作為一個(gè)樣本,請將這100名學(xué)生一分鐘跳繩個(gè)數(shù)的頻率分布直方圖補(bǔ)充完整(只畫圖,不需要寫出計(jì)算過程);
![]()
(2)若該校共有3000名學(xué)生,所有學(xué)生的一分鐘跳繩個(gè)數(shù)X近似服從正態(tài)分布
,其中
為樣本平均數(shù)的估計(jì)值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).利用所得正態(tài)分布模型,解決以下問題:
①估計(jì)該校一分鐘跳繩個(gè)數(shù)超過165個(gè)的人數(shù)(結(jié)果四舍五入到整數(shù));
②若在該校所有學(xué)生中任意抽取4人,設(shè)一分鐘跳繩個(gè)數(shù)超過180個(gè)的人數(shù)為
,求隨機(jī)變量
的分布列、期望與方差./span>
附:若隨機(jī)變量Z服從正態(tài)分布
,則
,
,
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com