欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

17.已知M=$\frac{{C}_{2015}^{0}}{1}$+$\frac{{C}_{2015}^{1}}{2}$+$\frac{{C}_{2015}^{2}}{3}$+…+$\frac{{C}_{2015}^{2014}}{2015}$+$\frac{{C}_{2015}^{2015}}{2016}$,則M=( 。
A.$\frac{{2}^{2016}-1}{2016}$B.$\frac{{2}^{2016}}{2016}$C.$\frac{{2}^{2015}-1}{2015}$D.$\frac{{2}^{2015}}{2015}$

分析 由二項式定理得到$(1+x)^{2015}={C}_{2015}^{0}+{C}_{2015}^{1}x$$+…+{C}_{2015}^{2015}{x}^{2015}$,兩邊求定積分得答案.

解答 解:由$(1+x)^{2015}={C}_{2015}^{0}+{C}_{2015}^{1}x$$+…+{C}_{2015}^{2015}{x}^{2015}$,
得:${∫}_{0}^{1}(1+x)^{2015}dx$=${∫}_{0}^{1}[{C}_{2015}^{0}+{C}_{2015}^{1}x+…+{C}_{2015}^{2015}{x}^{2015}]dx$,
∴$\frac{(1+x)^{2016}}{2016}{|}_{0}^{1}=({C}_{2015}^{0}x+\frac{1}{2}{C}_{2015}^{1}{x}^{2}+…+\frac{1}{2016}{C}_{2015}^{2015}{x}^{2016}){|}_{0}^{1}$,
即$\frac{{2}^{2016}-1}{2016}$=$\frac{{C}_{2015}^{0}}{1}$+$\frac{{C}_{2015}^{1}}{2}$+$\frac{{C}_{2015}^{2}}{3}$+…+$\frac{{C}_{2015}^{2014}}{2015}$+$\frac{{C}_{2015}^{2015}}{2016}$,
∴M=$\frac{{C}_{2015}^{0}}{1}$+$\frac{{C}_{2015}^{1}}{2}$+$\frac{{C}_{2015}^{2}}{3}$+…+$\frac{{C}_{2015}^{2014}}{2015}$+$\frac{{C}_{2015}^{2015}}{2016}$=$\frac{{2}^{2016}-1}{2016}$,
故選:A.

點評 本題考查了數(shù)列的求和,考查了數(shù)學轉(zhuǎn)化思想方法,關(guān)鍵是二項式定理和定積分的應用,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.已知f(x)=$\left\{\begin{array}{l}-3{x^2}+4x,0≤x<1\\ f(x-1)+1,x≥1.\end{array}$則f(3)=3;當1≤x≤2時,f(x)=-3x2+10x-6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.計算:$\frac{cosα}{sin\frac{α}{2}cos\frac{α}{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.當m為何值時,方程x2-4|x|+5=m;
(1)無解;
(2)有兩個實數(shù)解;
(3)有三個實數(shù)解;
(4)有四個實數(shù)解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,橢圓C1:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)與拋物線C2:x2=4y有公共的焦點F.點A為橢圓C1與拋物線C2準線的交點之一,過A向拋物線C2引切線AB,切點為B,且點A,B都在y軸的右側(cè).
(Ⅰ)證明:FA⊥FB;
(Ⅱ)證明:直線AB是橢圓C1的切線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知直線(1-m)x+(3m+1)y-4=0所過定點恰好落在函數(shù)f(x)=$\left\{\begin{array}{l}lo{g}_{a}x,0<x≤3\\|x-4|,x>3\end{array}\right.$的圖象上.
(1)f($\frac{1}{3}$)=-1
(2)若函數(shù)h(x)=f(x)-mx+2有三個不同的零點,則實數(shù)m的取值范圍是($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知b、c、d∈R,函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$bx2+cx+d在(0,1)上既有極大值又有極小值,則c2+(1+b)c的取值范圍是( 。
A.(0,$\frac{1}{16}$)B.(0,$\frac{1}{16}$]C.(0,$\frac{1}{4}$)D.[0,$\frac{1}{4}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖所示,AD⊥平面ABC,CE⊥平面ABC,AD與 CE不相等,AC=AD=AB=1,BC=$\sqrt{2}$,四棱錐B-ACED的體積為$\frac{1}{2}$,F(xiàn)為BC的中點.求:
(Ⅰ)CE的長度;
(Ⅱ)求證:AF∥平面BDE;
(Ⅲ)求證:平面BDE⊥平面BCE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知數(shù)列{an}滿足a1=2,對任意m、p∈N*都有am+p=am•ap
(1)求數(shù)列{an}(n∈N*)的通項公式an;
(2)數(shù)列{bn}滿足an=$\frac{b_1}{2+1}+\frac{b_2}{{{2^2}+1}}+\frac{b_3}{{{2^3}+1}}+…+\frac{b_n}{{{2^n}+1}}$(n∈N*),求數(shù)列{bn}的前n項和Bn;
(3)設(shè)cn=$\frac{B_n}{2^n}$,求數(shù)列{cn}(n∈N*)中最小項的值.

查看答案和解析>>

同步練習冊答案