分析 (1)使解析式有意義的x范圍是滿足不等式組$\left\{\begin{array}{l}{1+x>0}\\{1-x>0}\end{array}\right.$的x范圍;
(2)求出函數(shù)的定義域?yàn)椋?1,1),再由f(-x)=ln(1-x)-ln(1+x)=-f(x),可知此函數(shù)為奇函數(shù).
解答 解:(1)使解析式有意義的x范圍是滿足不等式組$\left\{\begin{array}{l}{1+x>0}\\{1-x>0}\end{array}\right.$,解得-1<x<1,所以函數(shù)的定義域?yàn)椋?1,1),.
(2)由(1)得到函數(shù)的定義域?yàn)椋海?1,1),關(guān)于原點(diǎn)對(duì)稱.
又f(-x)=ln(1-x)-ln(1+x)=-(ln(1+x)-ln(1-x))=-f(x),由上可知此函數(shù)為奇函數(shù).
點(diǎn)評(píng) 本題主要考查函數(shù)定義域的求法以及函數(shù)的奇偶性的判斷,屬于基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | {1,4} | B. | {x|1≤x≤4} | C. | {x|x≤1或x≥4} | D. | {x|1<x<4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| x | 1 | 2 | 3 | 4 | 5 |
| y | y1 | y2 | y3 | y4 | y5 |
| A. | 50 | B. | 113 | C. | 115 | D. | 238 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
| t(時(shí)) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
| y(米) | 1.5 | 2.4 | 1.5 | 0.6 | 1.4 | 2.4 | 1.6 | 0.6 | 1.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 6 | B. | 10 | C. | 8 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{16}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com